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APPENDIX

A. KADL for Various Machine Learning Models
Knowledge-augmented deep learning has emerged as a

versatile approach that can be seamlessly integrated with a
broad spectrum of machine learning (ML) algorithms, en-
hancing their capabilities and extending their applicability
across various domains. A diverse range of ML algorithms
have been paired with knowledge augmentation, spanning
traditional methods to advanced deep neural architectures,
such as the convolutional neural network (CNN) [1], recurrent
neural network (RNN) [2], [3], variational autoencoder [4],
[5], and generative adversarial network (GAN) [6], [7]. For
instance, when combined with CNNs [1], knowledge might
be incorporated as physics-constrained intermediate variables
as a way of embedding physical principles. Besides, attention
mechanisms [8], graph-based neural networks [9], and fusion
layers [10] are common techniques used to effectively blend
the acquired knowledge with the model’s internal computa-
tions.

Beyond deep models, knowledge augmentation has also
been harnessed to bolster other ML methods. For instance,
prior knowledge on probabilistic dependencies has not only
been considered for boosting deep models, but more widely
considered for learning of probabilistic graphical models
(PGMs). Abstract structural knowledge represented as block-
structured priors is shown to help improve PGM structure
learning from sparse data [11]. The domain knowledge on
relatedness of tasks has been applied in multi-task BN struc-
ture learning to exploit the structural commonalities across
tasks [12]. Basides, Markov logic network (MLN) [13] com-
bines logic rules with probabilistic graphical models to model
first-order logic (FOL) and its uncertainties. Besides PGMs,
experts’ rating as domain knowledge is used as an input of
the data mining classification methods, such as naive Bayes,
logistic regression, decision tree, decision table, k-nearest
neighbor, and support vector machine (SVM), to reduce the
misclassification cost on evaluating applications in the domain
of indirect bank lending [14]. Similarly, features are ranked by
domain experts and are incorporated into SVM classifier [15].

In this survey, we focus on discussing knowledge augmen-
tation for deep learning models.

B. Evaluations of KADL
Knowledge-augmented deep learning (KADL) demonstrates

its potential to enhance deep learning performance across
diverse applications. Through numerous empirical studies, we
observe consistent improvements achieved by various KADL
algorithms. To comprehensively assess the impact of KADL,
we focus on three critical performance aspects: accuracy, data
efficiency, and generalization. Since the evaluation varies with
respect to different applications and thus different benchmarks,
we choose representative works as case studies to illustrate the
effectiveness of KADL.

Accuracy
KADL has been demonstrated effective in improving the

accuracy for various applications. In computer vision, KADL
has been harnessed to advance human behavior understanding,
such as 3D body pose estimation and reconstruction [16], [17],
and facial action units (AU) detection [18], [19]. It has also
been applied for motion understanding such as force predic-
tion [1], [20], [21] and tracking [22]. Leveraging its integration
with semantic knowledge, KADL has also advanced scene
understanding [23], object and relation detection [24], [25],
and visual question answering (VQA) [10] tasks. For example,
in the object detection task, Fang et al. [24] leveraged semantic
consistency constraints derived from knowledge graph to reg-
ularize the neural network. Their empirical evaluation on two
benchmark datasets highlighted a substantial enhancement in
recall by up to 6.3 points, without compromising mean average
precision, when compared to the state-of-the-art model. In the
context of VQA, the KRISP model proposed by Marino et
al. [10] stands as an illustrative example. By harnessing both
implicit and explicit symbolic knowledge, KRISP achieved
remarkable accuracy gains. Its evaluation on the OK-VQA
benchmark dataset [26] showcased an accuracy of 38.35%, no-
tably surpassing the best ConceptBert performance of 33.66%.
These outcome underscores the ability of KADL to fuse
diverse forms of knowledge to elevate accuracy in various
tasks.

Within the domain of weather and climate understanding,
KADL is explored in lake temperature modeling [2], [27],
[28] and climate modeling [29]–[31]. An illustrative example
can be the physics-guided architecture (PGA) [27] for lake
temperature modeling. PGA was evaluated on two benchmark
lakes: the Lake Mendota in Wisconsin, USA (Table I) and
the Falling Creek Reservoir (FCR) in Virginia, USA (Ta-
ble II). The evaluation metrics are the rooted mean square
error (RMSE) on test set and the physical inconsistency. In
particular, the test RMSE measures if every sample is accurate
(per sample) while the physical inconsistency measures if
the proposed model makes sense in scientific applications
on average (mean). In direct comparison with two baseline
models (namely LSTM and PGL), the proposed PGA model,
by leveraging the incorporated physics principles, achieved the
smallest Test RMSE, always preserving physical consistency.
In particular, the PGL is the baseline where the physics
principles are incorporated using physics-based loss functions
which measure the physical inconsistency. When comparing
PGL with PGA, it becomes evident that integrating physics
principles via architecture customization is more effective than
utilizing a physics-guided training loss. This observation is
substantiated by superior performance in two benchmark lack
temperature modeling tasks.

TABLE I
ACCURACY EVALUATION OF LAKE TEMPERATURE MODELING ON LAKE

MENDOTA IN WISCONSIN, USA. TABLE IS REPRODUCED FROM [27].

Test RMSE (in oC; per sample) Physical inconsistency (mean)
LSTM 2.25 ± 0.14 0.10 ± 0.02
PGL 2.30 ± 0.12 0.12 ± 0.02
PGA 2.09 ± 0.18 0.00 ± 0.00
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TABLE II
ACCURACY EVALUATION OF LAKE TEMPERATURE MODELING ON
FALLING CREEK RESERVOIR (FCR) IN VIRGINIA, USA. TABLE IS

REPRODUCED FROM [27].

Test RMSE (in oC; per sample) Physical inconsistency (mean)
LSTM 2.96 ± 0.22 0.07 ± 0.03
PGL 2.84 ± 0.16 0.08 ± 0.03
PGA 2.19 ± 0.21 0.00 ± 0.00

Data efficiency
KADL has demonstrated a notable capacity to significantly
enhance data efficiency. One effective approach to leverage
domain knowledge involves training deep models with data
synthesized from conventional mechanistic models. By in-
corporating synthesized data, the deep models’ reliance on
training data is notably diminished [21], [23], [32], [33]. A
concrete illustration is evident in the field of robotics. The
success achieved in grasping 36 diverse and previously unseen
physical objects by GraspGAN [33] substantially improves
with a reduction in training samples, facilitated by the uti-
lization of simulated samples. As depicted in Table III, they

TABLE III
DATA EFFICIENCY EVALUATION OF SUCCESSFUL GRASPS FOR 36 DIVERSE

AND PREVIOUSLY UNSEEN PHYSICAL OBJECTS. TABLE IS REPRODUCED
FROM [33].

Method All 20% 10% 2% 1%
Real-only 67.65% 64.93% 62.75% 35.46% 31.13%

Rand. 75.58% 70.16% 73.31% 63.61% 50.99%
DANN 76.26% 68.12% 71.93% 61.93% 59.27%

DANN-R. 72.60% 66.46% 74.88% 63.73% 43.81%
GraspGAN 76.67% 74.07% 70.70% 68.51% 59.95%

showed the grasp success performance with different quantities
of real-world samples (100%, 20%, 10%, 2%, and 1%) and
8 million simulated samples. Real-only refers to the model
that is given only real data. Rand., DANN, and DANN-R
are three different baselines with different combinations of
simulated data generation and domain adaptation methods. As
shown, the proposed model GraspGAN achieved competitive
performance across different quantities of real-world samples.
Notably, when evaluated with only 1% of real-world samples,
GraspGAN achieved a remarkable success rate of 59.95%.
This outcome significantly outperforms the model trained
exclusively on real-world data, which achieves a success rate
of only 31.13%.

Furthermore, the utilization of domain knowledge in im-
proving data efficiency extends to label-free supervisions in
training neural networks [22]. Rather than relying on an-
notations, the domain knowledge is represented as physical
equations and used for training. The effectiveness of this
label-free supervision was assessed across various computer
vision tasks. For instance, in the context of tracking an object
in free fall, the model trained with the proposed label-free
supervision resulted in a correlation of 90.1% with respect to
the ground truth. For comparison, a supervised network trained
with the annotations achieved a correlation of 94.5%. In the
context of tracking the position of a walking man, the proposed
model exhibited predictions with a 95.4% correlation to the
ground truth. Surprisingly, the same network trained using

direct supervision encountered challenges in generalization
and yielded a notably lower correlation of 80.5% on the test
set. These experiments illuminate the potential of supervising
a neural network by employing only the relevant physics
equations governing the object’s behavior, diminishing the
reliance on extensive annotations for training purposes.

Besides the above two types of examples, KADL in general
has consistently demonstrated its effectiveness in improving
data efficiency. Through harnessing integrated domain knowl-
edge, KADL enables deep models to maintain competitiveness
even when confronted with a reduced pool of training samples.

Generalization
One representative category of works that improves generaliza-
tion is through the incorporation of equivariance. For instance,
Thomas et al. [34] introduced equivariances via tensor field
networks to improve generalization of neural networks. The
proposed model is applied to physics and chemistry. In the
domain of physics, they addressed the prediction of vectors
and tensors within the framework of classical mechanics.
Through learning, the model is able to predict vectors and
tensors that perfectly align with fundamental principles such
as the Newtonian gravity inverse square law and the moment
of inertia radial functions. In the domain of chemistry, they
addressed the generalization to missing molecules. When the
model is trained on molecules featuring 5 to 18 atoms, it
exhibited the ability to predict missing molecules containing
19 atoms, 23 atoms, and even those with 25 to 29 atoms,
achieving an impressive accuracy of 100% across the board.

Similarly, Wang et al. [35] studied the incorporation of
symmetries for improved generalization. They performed the
evaluation on Rayleigh-Bénard convection. Root Mean Square
Error (RMSE) between the forward predictions and the ground
truth over all pixels is used as a measurement of accuracy.
Energy Spectrum Error (ESE) is used as a measurement of
physical consistency. To simulate real-world conditions where
each sample lacks a fixed reference frame, they consider
random transformations from the relevant symmetry group
for each sample during both training and testing. Four types
of equivariance is considered: uniform motion equivariance
(UM ), magnitude equivariance (Mag), rotational equivariance
(Rot), and scale equivariance (Scal), As outlined in Table IV,
compared to the baseline model ResNet, the outcomes demon-
strate that Equ-ResNet consistently outperforms ResNet, yield-
ing a notable average improvement of 34% in terms of RMSE
and 40% in terms of ESE.

Furthermore, to understand the benefits of incorporating
the equivariance via architecture customization compared to
conventional data augmentation, Equ-ResNets is compared
to ResNets that are trained with data augmentation. Results
show that ESE is uniformly worse for models trained with
data augmentation compared to the equivariant models. It is
believed by the authors that data augmentation presents a
trade-off in learning. Though the model can be less sensitive
to the various transformations considered, it necessitates larger
model sizes and more extensive training on augmented data.
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TABLE IV
GENERALIZATION EVALUATION ON RAYLEIGH-BÉNARD CONVECTION.
ROOT MEAN SQUARE ERROR (RMSE) MEASURES THE ACCURACY AND

ENERGY SPECTRUM ERROR (ESE) MEASURES THE PHYSICAL
CONSISTENCY. TABLE IS REPRODUCED FROM [35].

RMSE ESE
ResNet 1.03 ± 0.05 0.96 ± 0.10
EquUM 0.69 ± 0.01 0.35 ± 0.13
ResNet 1.50 ± 0.02 0.55 ± 0.11

EquMag 0.75 ± 0.04 0.39 ± 0.02
ResNet 1.18 ± 0.05 1.21 ± 0.04
EquRot 0.77 ± 0.01 0.68 ± 0.01
ResNet 0.92 ± 0.01 1.34 ± 0.07

EquScal 0.74 ± 0.03 1.02 ± 0.02

By comparison, customizing architectures to incorporate sym-
metries does not require additional training efforts associated
with learning symmetries from augmented data. In the context
of weather and climate modeling, the aspect of generalization
has also been explored in evaluating the knowledge-augmented
deep learning, as outlined in Table 2 of the survey from
Kashinath et al. [31].

C. Expressive power of knowledge-augmented deep learning

The depth or width of deep neural networks (DNNs) enable
them to approximate a wide range of functions, making them
highly flexible and adaptable for various tasks. This capacity
is referred to as their ”expressive power” or ”representation
power”. Recently, people seek to gain deeper and more theo-
retical understanding of how and why neural network architec-
tures achieves their practical successes. This includes measur-
ing how the architectural properties of a neural network (depth,
width, layer type) affect its performance [36], [37]. Knowledge
augmentation is effective in enhancing the expressive power
of deep neural networks. For example, the architecture design
of LSTM is bio-inspired. In LSTM, memory cells with gating
are introduced to store related data, while discarding unrelated
data. Both scientific and experiential knowledge are used in
design of DNN architecture to enhance its expressive power, as
discussed in the main manuscript. As a result, DNNs become
capable of capturing even more intricate and domain-specific
patterns, leading to improved generalization and predictive
accuracy.

However, characterizing the expressiveness of neural net-
works, and understanding how expressiveness varies with
parameters of the architecture, has been a challenging problem
due to the difficulty in identifying meaningful notions of ex-
pressivity and in linking their analysis to implications for these
networks in practice. Furthermore, deep theoretical insights on
how knowledge augmentation helps improve the expressivity
of a neural network remains an unanswered question in the lit-
erature. Future efforts are required to establish deep theoretical
understanding on the effectiveness of incorporating domain
knowledge in enhancing the deep models’ performance via
quantifying the expressive power.
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