Knowledge Augmented Deep Neural Networks for Joint Facial Expression and Action Unit Recognition

Zijun Cui(presenter)

Rensselaer Polytechnic Institute cuiz3@rpi.edu

Tengfei Song

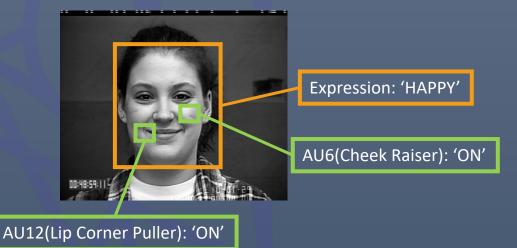
Southeast University songtf@seu.edu.cn

Yuru Wang

Northeast Normal University wangyr@nenu.edu.cn

Qiang Ji

Rensselaer Polytechnic Institute qji@ecse.rpi.edu



OVERVIEW

☐ Tasks:

- Facial Expression Recognition(FER)
- O Action Unit(AU) Detection

☐ *Motivations*:

- Facial expression and AUs are strongly correlated
- Generic knowledge on expression-AUs relationships is available

☐ Contributions:

- A knowledge model encoding the generic knowledge systematically
- ❖ A deep learning framework for *joint* facial expression and AU recognition

GENERIC KNOWLEDGE

- -- on expression-AUs probabilistic relationships
- ☐ Expression-dependent single AU probabilities
 - \circ AU4 is a primary AU given Anger expression p(AU4 = ON|Anger) > p(AU4 = OFF|Anger)
- ☐ Expression-dependent joint AU probabilities
 - AU6 and AU12 are positively correlated given Happy expression

```
p(AU6 = ON|AU12 = ON, Happy) > p(AU6 = OFF|AU12 = 1, Happy)
p(AU6 = ON|AU12 = ON, Happy) > p(AU6 = ON|AU12 = OFF, Happy)
```

- ☐ Expression-independent joint AU probabilities
 - AU1 and AU2 are negatively correlated

```
p(AU1 = ON|AU2 = ON) > p(AU1 = OFF|AU2 = ON)

p(AU1 = ON|AU2 = ON) > p(AU1 = ON|AU2 = OFF)
```

ENCODING OF GENERIC KNOWLEDGE

-- Bayesian Network(BN) Learning with Probability Constraints

☐ Regression Bayesian Network

$$p(X_i = k | \pi(X_i)) = \sigma_M(\sum_{j=1}^J w_{ijk} \pi_j(X_i) + b_{ik})$$

where weights $\mathbf{w} = \{w_{ijk}\}$ and bias $\mathbf{b} = \{b_{ik}\}$ are to be learned. And $A(\mathbf{w})$ defines the structure.

- The constraint of Directed Acyclic Graph(DAG): $\operatorname{tr}(e^{A(w)\circ A(w)})=0$
- \square A penalty function f(w, b; s) measures the violation of constraints given weights w, bias b and margins s
- ☐ A Constraint Optimization Approach for BN learning

$$w^*, b^*, s^* = \arg\min_{w,b,s} f(w,b;s) + \gamma ||w||_1 - \mu ||s||_2^2$$

s. t. tr $(e^{A(w) \circ A(w)}) = 0$

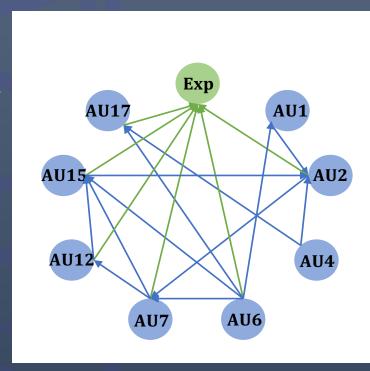
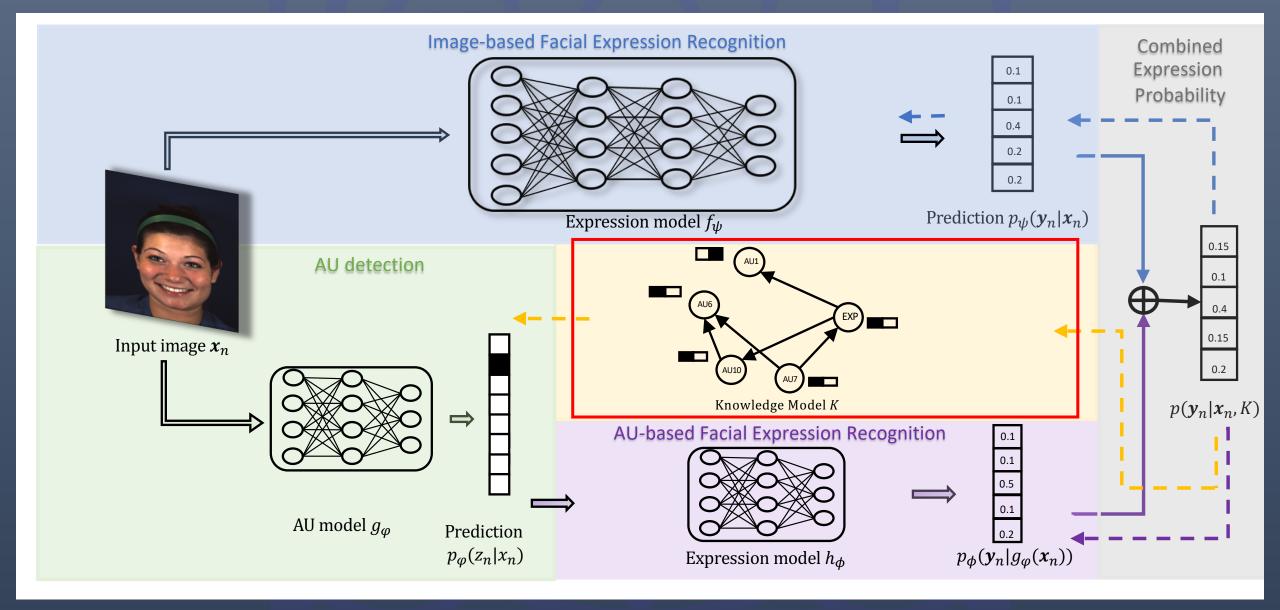



Figure: the learned structure given constraints

The Joint Learning Framework

EXPERIMENTS

-- compare to SOAs

☐ Action Units detection

☐ Facial Expression Recognition

Table 6: Comparison to the SoAs on AU detection.

Supervision	Method	BP4D	CK+	MMI
Supervised	HRBM[47]	.67	.79	.56
	MC-LVM[8]	-	.80*	-
	JPML[56]	.68*	.78*	_
	AU R-CNN[30]	.63*	-	-
Weakly-supervised	HTL[40]	.50	.66	.42
	LP-SM[54]	.55	.72*	.50
	TCAE[22]	.56*	=	_
	AUD-BN(baseline)	.56	.69	.47
	AUD-EA(gBN)	.57	.74	.58

Table 8: Comparison with SoA FER methods

Methods	BP4D	CK+	MMI	EmotioNet
STM-Explet [27]	-	94.19*	75.12*	-
DTAGN(Joint)[12]	-	97.25*	70.24*	-
DeRL[50]	-	97.30*	73.23*	-
ILCNN[3]	-	94.35*	70.67*	=
DAM-CNN[49]	_	95.88*	-	-
FMPN-FER[4]	60.16	96.53	82.74*	84.88
DeepEmotion[32]	79.54	95.23	72.66	81.51
FER-I(baseline)	61.68	94.29	67.35	80.85
FER-IK(gBN)	83.82	97.59	84.90	95.55

Thank you!