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Abstract

Action units (AUs) represent descriptions of the facial muscle activation. Given the
activation of facial muscles, the facial skin is deformed by following the underlying
facial muscle mechanics. This paper proposes to apply the generic knowledge
from the principles of the facial anatomy and 3D projection models. And the
generic knowledge is combined with the data information through the proposed
joint top-down and bottom-up framework. Specifically, we first propose a top-down
AU model where 3D AU blendshapes and the 3D projection models are applied
as the representation of the generic knowledge. A data-driven bottom-up AU
model is constructed from the observed 2D images. Finally, an integration model
is proposed to perform final AU predictions by combining the estimations from
both the top-down model and the bottom-up model. The final AU predictions are
thus based on both generic knowledge and data information. Evaluations on a
benchmark dataset show that by leveraging the generic knowledge, the proposed
top-down and bottom-up framework can improve the AU detection performance.

1 Introduction

Conventional methods infer AU activation from input images [8, 4, [2]]. These conventional methods
work in a bottom-up manner which are data-driven, and may not generalize well to different datasets.
Some existing AU detection models explore the usage of the prior knowledge, and such prior
knowledge is mainly about the AU relationships. The AU relationships can be captured by structure
models such as tree [20, 7] or graphical models [[18}[1914}[16., 6 [12]]. And most of the existing works
learn AU relationships from training data as prior knowledge and the knowledge is thus data-based.
To the best of our knowledge, only limited papers tried to explore the generic domain knowledge, i.e.,
data-free knowledge based on both the underlying facial anatomy and 3D projection models. The
current data-free knowledge mainly comes from field experience [20, (10, 124} 25]]. As AU activation
is caused by facial muscle movement, we propose to exploit the generic knowledge from both the
facial anatomic and physical principles of facial muscles for AU detection.

Usually, the prior knowledge model works in two different ways. In one way, the prior knowledge
is used to model structural outputs(e.g., [19]), where the exploited prior knowledge still works in
a bottom-up framework. On the other hand, the prior knowledge works as a regularization for the
learning of the conventional bottom-up models(e.g., [7]). Different from existing approaches, we
propose a joint top-down and bottom-up framework for AU detection.

2 Proposed Method

Specifically, the proposed framework includes a top-down projection module and a bottom-up
estimation module as shown in Figure[I] Given a 2D facial image, the top-down model can predict
the active levels of AUs based on both facial anatomy-driven 3D AU blendshapes and 3D projection
models. A bottom-up deep model is learned given the 2D facial images with corresponding AU
annotations. In the end, we produce the final AU predictions by combining the top-down projections
with the bottom-up estimates. The overview of our proposed approach is shown in Figure T}
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2.1 Top-down AU Projection

Top-Down Projection

We propose the top-down AU model to predict AU 20landmarks 3D Landmark
activation based on generic knowledge on the un- Estimator
derl.ying facial muscle mechanics as well as the 3D 30 Blendshape
projection models. The top-down AU model con- Engine

tains two components: 3D blendshape engine based
on facial anatomy and 3D facial landmark estima-
tor with through inverse 3D projection model. We
firstly introduce the facial muscle and the modelling
of its underlying mechanics. We then introduce the

proposed 3D blendshape engine and the 3D facial Est?,::tes
landmark estimator.

AUs
Active Level

Integration:
Final AU predictions

) Deep model based
Facial muscle and the modeling of its mechanics AT AU Detector

Human face is a soft tissue organ complex, with a

large investing network of musculature. It consists gigure 1: Overview of the proposed method. The
of several anatomically distinct layers: the skin, sub-  op-down model combines anatomic knowledge
cutis, fascia and muscles. It is evident that the skin, with projection models to predict AUs, and the
being supported by bone and multiple layers of mus- bottom-up model performs data-based AU predic-
cles, exhibits different facial expressions, activated tion in 2D. The top-down and bottom-up prediction
by the underlying facial muscles. Different muscle are combined through the integration model.
activation can result in different facial expressions. For example, the corrugator supercilii muscle is
used to compress the skin between the eyebrows, which are drawn downwards and inwards to create
such expressions as anger and disgust.

Modelling the mechanics for facial expression generation is important for this research. And such
modelling can be very challenging as the facial soft tissues are structurally complex and exhibit
nonlinear constitutive behaviour. The constitutive law is usually carefully defined to obtain the stress
tensor for each facial point based on the strain at that point [11]. In order to simulate dynamic facial
deformations, Newton’s second law of motion is applied. Given this understanding, the human face is
usually represented by the conforming tetrahedralized flesh mesh [5,[15}[1] in computer graphics. The
finite element method [[15] or the finite volume method [[17, 15, 1] are widely employed to compute the
deformation for each mesh vertex. Though performing realistic simulations, existing facial muscle
models in computer graphics are very computationally challenging. To evaluate muscle contribution
from anatomically accurate geometries while maintaining the computational complexity at a tractable
level, we instead consider 3D facial blendshapes, which implicitly capture the principles of the face
muscles and their motions.

3D blendshape engine Facial blendshapes are widely used for realistic animation due to its sim-
plicity and effectiveness [9, 22| [13]]. Facial blendshaps are a set of 3D surface morphs where each
morph corresponds to a specific semantic meaning, such as an expression [3]] or an AU[21]]. Different
morphs have different vertex positions capturing their deformations and the topologies of all the
morphs capture the holistic facial expression. An expression can be synthesized through the linear
combination of particular blendshapes together with the neutral face. In this paper, we apply the
3D AU blendshapes provided by the FaceGerﬂ which provides morphs at three different levels:
phonemes, action units, and expressions. Given the AU blendshapes, we define our 3D AU basis,
where each basis corresponds to one AU action together with a neutral face, as shown in Figure 2Ja).
And we manually label the 3D facial landmarks on the surface mesh to represent facial skin motions.
Particularly, we collected K AU bases b, € RM*3 with k = 1, .., K and M being the number of
landmarks. Given 3D landmarks p for the neutral face, we have 3D landmarks p for an expressed
face as

K
p=p+) ab (M
k=1
where a = {a;, }X_, represent the active level for each AU and aj, > 0.

Instead of generating an expressed face in a forward way as shown in Eq. 1, we are aimed at the
inverse process, i.e., inferring AU activation given observed facial skin distortions. To achieve this, we
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introduce the 3D blendshape engine as shown in Figure[2] Specifically, given observed 3D landmarks
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Figure 2: 3D Blendshape Engine

p € RM>3 for an expressed face, the facial skin distortion of the expressed face is measured by
the surface landmark displacements from their neutral positions. And the AUs’ active levels of the
expressed face is then automatically determined through the 3D blendshape engine as
K
* — . - 2
a” = arg min [|p —p ;akka )
with a* = [a], a3, ..., a%] and a}, > 0.

3D facial landmark estimator To use Eq. [2]for top-down AU prediction given only 2D images, we
need first estimate 3D facial landmark positions from the 2D images. Here, we exploit the projective
model in computer vision to infer 3D landmarks p from individual-specific 2D landmarks q in the
image. Given an individual-specific 2D landmark point in the image frame g = (¢, r) and the intrinsic
camera matrixE] W, we obtain its corresponding 3D individual-specific landmark point p* = (z,y, 2)

in camera frame as
x 1 c
y| =-wr 3)
z z 1

We assume weak perspective projection, and z coordinate is Eq. [3]is replaced by Zz, the average 3D
facial landmark points to the camera. In practice, we treat z as a hyper-parameter to tune. Consider
the reconstructed 3D landmarks for neutral face p® and for expressed face p®, the differences between
p® and p® are caused by both head pose and facial muscle actions. To accurately estimate facial
muscle actions, we need to remove effects from rigid head poses. To achieve this, we select a subset
of landmarks that always move rigidly, such as the landmark on the nose tip, and we solve for a
rotation matrix and a translation vector via

RA TA = argr}r%li%l [|p® — Rp® = T|| + ||RT]5$ —RTT —p’|| ())

Given estimated R“ and 7, we have the aligned 3D landmarks for each p® as p**® = R4p® + T4,
As the recovered 3D individual-specific landmarks p**¢ is specified with respect to the camera frame,
we need to register the landmarks p**¢ to the blendshape frame, which is used for 3D AU bases by the
3D blendshape engine. To achieve this, we perform a rigid transformation, i.e., p = R¥pste + TF
where R” and T can be estimated given a set of corresponding rigid facial landmark points in both
the camera frame and the engine frame. We assume that different subjects’ landmarks can be fitted
into our AU bases through the rigid transformation with trivial errors.

W can be recovered through a set of corresponding 2D points and 3D points.



2.2 Bottom-up AU Estimation

We introduce the bottom-up model f, that performs data-drived facial AU estimation from 2D
images. Given 1nput 1mages {z,}N_, and the one-hot encoding of AU labels {yST}"_, =
{ylG,IT, yzch sy Y Mn}n 1> where M is the total number of AUs and NV is the total number of training
samples, the AU detector fy, jointly detects M AUs and produces the probability distributions of A
AUs. The model v is obtained as,

N M

= arg mln Z Z I(yST, w (Tn)) )]

n=1m=1

where [ is the cross entropy loss and f* (x,,) is the predicted probability of m‘* AU.
2.3 Top-down and Bottom-up Integration
‘We now introduce the integration model g4 to combine the top-down AU projections with the bottom-

up AU estimations. Given each image x,,, the integration model takes the AU active level a;, from
the top-down model and the estimated AU probabilities fy(x,,) from the bottom-up model as input.

Given the training images {x,, }_, and the AU annotations {y&7}Y_,, we obtain ¢ as:
N M
¢* = arg mlnz Z I ymn,g¢ [ (@n); an,,)) (6)
n=1m=1

where [ is the cross entropy loss and g;* (f;" (1) gives the probability of m*"* AU.

) mn)

3 Experiments

We apply BP4D-Spontaneous database[23]] for the experiment. BP4D is a spontaneous database
containing 2D and 3D expression data for 41 subjects. We collect 732 apex frames in total and employ
3-fold subject-independent cross-validation experiment. For the top-down model, intrinsic camera
parameter W, rotation matrices R, R and translation vectors 74, T are estimated given 2D/3D
landmarks provided in the BP4D. For the bottom-up model, we employ the shallow three layer CNN
model. The kernel size of each layer is 5x5, 5x5, 3x3 respectively. The integration model consists
of three fully connected layers. We evaluate our proposed method with Fl-score. We perform an
ablation study of the propose model, where we show the performance of top-down model, bottom-up
model and the integration model. Results are shown in Table|l] We can see that top-down model can

Table 1: Ablation study on BP4D (Measurement: F1-score)

AU Model AUl AU2 AU4 AU6 AU7 AUIO0O AUI2 AUI4 AUIS AUI7 AU23 AU24 | Ave.
Top-down Model | 47.6 48.7 55.6 737 864 783 76.1 64.6 37.5 70.9 552 4477 | 61.6
Bottom-up Model | 46.5 33.8 483 776 860 857 82.8 64.2 49.8 75.6 56.7 56.1 | 63.6
Integration Model | 48.6 349 487 784 874 86.3 83.2 66.2 518  76.7 57.7 58.6 | 64.9

achieve comparable performance compared to the bottom-up model. By combining the top-down
model with the bottom-up model, the integration model achieves better performance on most of the
AUs, and achieves improved performance on average over all the AUs.

4 Discussion

In this work, we explore the usage of the generic knowledge from both the underlying facial muscle
mechanism and projective models for AU detection. Particularly, we propose a top-down AU model
where 3D AU blendshapes based on facial anatomy are applied as the representation of the generic
knowledge on the physical principles of facial actions. We then employ the principles of projective
models to infer 3D facial motion from their 2D images. The generic knowledge is then combined
with data information through the proposed joint top-down and bottom-up framework. Our evaluation
on the BP4D dataset shows that through the proposed joint top-down and bottom-up inference model,
the performance of the AU prediction can be improved by leveraging the generic knowledge.
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