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Abstract

Causal discovery is to learn cause-effect relation-
ships among variables given observational data
and is important for many applications. Existing
causal discovery methods assume data sufficiency,
which may not be the case in many real world
datasets. As a result, many existing causal dis-
covery methods can fail under limited data. In
this work, we propose Bayesian-augmented fre-
quentist independence tests to improve the perfor-
mance of constraint-based causal discovery meth-
ods under insufficient data: 1) We firstly introduce
a Bayesian method to estimate mutual information
(MI), based on which we propose a robust MI based
independence test; 2) Secondly, we consider the
Bayesian estimation of hypothesis likelihood and
incorporate it into a well-defined statistical test, re-
sulting in a robust statistical testing based indepen-
dence test. We apply proposed independence tests
to constraint-based causal discovery methods and
evaluate the performance on benchmark datasets
with insufficient samples. Experiments show sig-
nificant performance improvement in terms of both
accuracy and efficiency over SOTA methods.

1 Introduction
Learning causal relations has been a fundamental and widely-
investigated topic. The causal relations are captured by a di-
rected acyclic graph (DAG), and a directed link in DAG cap-
tures cause-effect relation between two variables connected
by the link. Specifically, a directed link from node X to node
Y indicates the cause-effect relation between cause variable
X and effect variable Y . Causal discovery aims at learning
a DAG capturing causal-effect relationships among a set of
random variables from observational data. Existing causal
discovery methods focus on learning a DAG with high confi-
dence from sufficient data samples. Not much attention, how-
ever, has been paid to performance improvement of causal
discovery under limited data. Such work is important, as even
in the era of big data, there are still domains in which the
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availability of data is very limited. For example, in biolog-
ical or clinical disciplines, data can be severely insufficient
either because of high cost or lack of cases from which data
is collected [Mukherjee and Speed, 2007]. Furthermore, even
for applications with a vast amount of data, the data may not
adequately cover all possible states of the nodes, leading to
insufficient data for certain states. For example, the observed
data under the absence of earthquake is adequate, while the
observed data under the occurrence of earthquake is limited,
due to the fact that earthquake rarely happens in nature.

Constraint-based causal discovery methods apply indepen-
dence tests to determine a DAG from observational data and
can be performed globally or locally. Global approaches aim
at learning cause-effect relationships among all random vari-
ables, such as PC-stable [Colombo and Maathuis, 2014], and
Sepset consistent PC (SC-PC) [Li et al., 2019]. Global causal
discovery methods discussed above learn DAGs that are in
the same markov equivalent class of ground truth DAG. Fur-
ther tests under certain assumptions about the graph or data
distribution are needed to resolve the causal ambiguity [Gly-
mour et al., 2019]. In this paper, we focus on learning markov
equivalent DAGs. In contrast to global approaches, local
approaches identify the direct causes and effects of a tar-
get variable, represented by a causal Markov Blanket [Gao
and Ji, 2015; Yang et al., 2021]. A causal Markov Blan-
ket captures local relationships of a target variable by iden-
tifying its parents, children, and spouses. For both global
and local approaches, the main challenge of constraint-based
causal discovery methods is that their performance highly de-
pends on the accuracy of the independence test. Indepen-
dence test error, even one mistake in independence decision,
can propagate throughout the graph, causing a sequence of er-
rors and resulting in an erroneous DAG with incorrect orien-
tations [Spirtes, 2010]. Hence, to perform a robust constraint-
based causal discovery, it is crucial to improve the robustness
of the independence test.

To improve the causal discovery performance under insuf-
ficient data, we propose to introduce Bayesian approaches to
independence tests for accurate and efficient constraint-based
causal discovery. Specifically, two Bayesian-augmented
frequentist independence tests are proposed, whereby we
use Bayesian approach to reliably estimate, under low data
regime, independence test statistics used by frequentist in-
dependence tests. For both MI estimation (Sec.3.1) and hy-
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pothesis likelihood estimation (Sec.3.2), we employ Bayesian
inference to calculate statistics by considering the entire pa-
rameter space instead of using a point estimate one. Given the
estimated Bayesian statistics, we follow the standard frequen-
tist framework to perform independence test. The proposed
Bayesian-augmented independence tests are then applied to
improve the constraint-based causal structure learning. We
evaluate both local and global causal discovery performance
with proposed independence tests on benchmark datasets and
compare them to state-of-the-art methods. We empirically
demonstrate the effectiveness of the proposed Bayesian ap-
proaches in improving both the accuracy and efficiency of the
local and global causal discovery under insufficient data.

2 Related Work
To handle causal discovery under insufficient data, some
methods downsize the problem domain to sub-domains. Ro-
hekar et al., [2020] approximated the structure by perform-
ing independence tests with a small fixed size of the con-
dition set. The structure was then refined by iteratively in-
creasing the condition set. A similar idea was explored in the
Recursive Autonomy Identification (RAI) method [Yehezkel
and Lerner, 2009]. Related works along this line always as-
sume that there exist sufficient data for sub-domains. Besides,
Claassen and Heskes [2012] estimated the posterior distribu-
tion of the independence hypothesis between two variables,
based on which reliability was quantified. The causal discov-
ery was then processed in decreasing order of reliability. Ro-
hekar et al., [2018] estimated posterior distribution of DAG
through bootstrap samples. The negative effect from indepen-
dence tests error was minimized through model averaging.

Some causal discovery methods address the limited data
issue by directly improving the independence test [Marx and
Vreeken, 2018]. A Bayesian-augmented frequntist indepen-
dence test based on Bayes Factor (BF) was proposed [Na-
tori et al., 2017] whereby Bayesian parameter estimate is em-
ployed in computing BF while the value of BF is then ap-
plied to a frequentist independence test. The proposed inde-
pendence test is incorporated into RAI, achieving competitive
DAG learning performance. However, a threshold is required
in [Natori et al., 2017] and the selection of threshold can be
heuristic. Instead, we propose to formulate the Bayes Fac-
tor into a well-defined statistical independence test without
requiring threshold tuning.

In addition, different approaches have been proposed for
robust independence tests under insufficient data. These
methods, however, are not aimed at improving the causal dis-
covery performance. Seok and Seon Kang [2015] improved
the estimation of mutual information (MI) by partitioning the
whole sample space into sub-regions. For better MI esti-
mation under limited data, Bayesian approaches have been
widely considered [Hutter, 2002; Archer et al., 2013]. An-
other category of recent independence test techniques are fo-
cused on developing non-parametric methods to improve ef-
ficiency, such as CCIT [Sen et al., 2017] and RCIT [Strobl et
al., 2019]. These works assume the availability of sufficient
data and are mainly focused on continuous variables, while
we are focused on discrete ones.

3 Proposed Methods
We consider two types of independence test: MI based and
statistical testing based independence tests. We introduce
Bayesian approaches to improve both types of independence
tests through a Bayesian-augmented frequentist framework.
Particularly, for MI based approach, we employ empirical
Bayesian approach for better MI estimation under limited
data. For statistical testing based approach, we consider the
empirical Bayesian estimation of hypothesis likelihood and
formulate it into χ2 statistical independence test, providing
an accurate p-value under limited data.

3.1 Bayesian Approach for Mutual Information
Based Independence Test

The mutual information (MI) of two discrete ran-
dom variables X and Y is defined as MI(X;Y ) =∑Kx

i=1

∑Ky

j=1 P (xi, yj) log
P (xi,yj)

P (xi)P (yj)
, where Kx and Ky

denote the total number of possible states of X and Y
respectively. P (xi, yj), P (xi), and P (yj) represent the
joint probability of (X,Y ), and the marginal probabilities
of X and Y respectively. By definition, MI(X;Y ) = 0
if and only if X and Y are independent. In practice, the
true MI is unknown, and the estimated MI is always larger
than zero. In the following, we denote the probability
distribution parameters as θ, i.e., P (xi) = θi, P (yj) = θj
and P (xi, yj) = θij . Conventionally, MLE is employed
to estimate θ from data as θ̂ = argmaxθ p(D|θ), where
P (D|θ) is the likelihood of parameter θ given the data D.
MI is then estimated as MI = MI(X;Y |θ̂). When data
is insufficient, MLE is not reliable [Geweke and Singleton,
1980] and MI tends to be overestimated. Instead, the full
Bayesian MI is estimated from data over the entire parameter
and hyper-parameter space, i.e.,

ˆMIfB =MI(X;Y |D)

=

∫ ∫
MI(X;Y |θ, α)p(θ, α|D)dθdα

=

∫ ∫
MI(X;Y |θ)p(θ|α,D)p(α|D)dθdα

(1)

where α is the hyper-parameter for symmetric Dirichlet prior
of θ. The full Bayesian MI is the expected MI over the joint
posterior distribution of the parameters and hyper-parameter,
i.e., p(θ, α|D). The integration over hyper-parameter α can
be computationally challenging [Archer et al., 2013]. In-
stead of marginalizing out α, we propose to maximize it out.
Particularly, we approximate the integration over the hyper-
parameter space by its mode α∗ that maximizes a posterior
(MAP) of α, i.e., α∗ = argmaxα p(α|D). By assuming uni-
form distribution of p(α), we have α∗ = argmaxα p(D|α).
The likelihood p(D|α) can be computed as,

p(D|α) = N !
Γ(Kα)

Γ(Kα+N)

K∏
i=1

Γ(α+ ni)

Γ(α)ni!
(2)

whereK is the number of states for the random variable, ni is
the number of samples for state i, and N =

∑K
i ni. P (D|α)
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follows Polya distribution and Γ(x) is the gamma function.
We solve for α∗ with a fixed-point update [Minka, 2000].
Given α∗, the full Bayesian method is converted to the em-
pirical Bayesian method, and we have the proposed empirical
Bayesian MI M̂I

eB
defined as,

M̂I
eB

=

∫
MI(X;Y |θ)p(θ|D,α∗)dθ (3)

with a closed-form solution:

M̂I
eB

= ψ(N + α∗K + 1)

−
∑
ij

nij + α∗

N + α∗K
[ψ(ni + α∗Ky + 1)

+ ψ(nj + α∗Kx + 1)− ψ(nij + α∗ + 1)

(4)

where ψ(x) is the digamma function. ni and nj are the num-
ber of samples for X = i and Y = j respectively, and nij is
the number of samples for (X,Y ) = (i, j). Given the esti-
mated MI, we compare it against a pre-defined threshold for
independence test. If MI is smaller than the threshold, two
random variables will be declared to be independent, and de-
pendent otherwise.

3.2 Bayesian Approach for Statistical Testing
Based Independence Test

We now introduce our proposed Bayesian approach to im-
prove the statistical testing based independence test. We
firstly consider a standard independence test, G test [McDon-
ald, 2009], which is a likelihood ratio test with null hypoth-
esis assuming two random variables are independent. G test
is a widely used statistical test. As the same with other sta-
tistical tests, G test doesn’t require threshold tuning and the
significance level is set to be 5% by default. The formula
for the statistic G reads as G = −2

∑Kx

i=1

∑Ky

j=1 nij ln
θ̂iθ̂j

θ̂ij

where θ̂ = argmaxθ P (D|θ). Samples D = {Dn}Nn=1 are
i.i.d given parameter θ̂ and the statisticG follows asymptotic
χ2
df=(Kx−1)(Ky−1) distribution, based on which a statistical

test can be performed. As MLE parameter estimates are not
reliable under insufficient data, leading to inaccurate estima-
tion of the likelihood of hypothesis, we instead consider the
empirical Bayesian estimation. Specifically, we employ the
Bayes Factor (BF) [Kass and Raftery, 1995] which defines the
ratio of expected likelihoods of null hypothesis(H0) and that
of the alternative hypothesis(H1) over all possible parameter
settings with the posterior distributions of parameters under
null and alternate hypothesis respectively,

BF =
P (D|H0, α

0)

P (D|H1, α1)
=

∫
P (D|θ)P (θ|H0, α

0)dθ∫
P (D|θ)P (θ|H1, α1)dθ

(5)

where α0 and α1 are the hyper-parameters for the symmet-
ric Dirichlet prior under null and alternate hypothesis re-
spectively. Both hypothesis likelihoods P (D|H0, α

0) and
P (D|H1, α

1) can be analytically solved, and BF can be com-
puted. However, BF can’t be directly applied to a statisti-
cal test because samples D = {Dn}Nn=1 are not i.i.d given

hyper-parameter α and BF no longer follows the χ2 distri-
bution under the null hypothesis. Instead, we propose to ap-
proximate P (D|α) by a multinomial distribution and calcu-
late modified parameters of multinomial distribution with α
taken into account, as both capture the distributions for inte-
ger random variables, i.e.,

P (D|α) ≈ P (D|θ̃) = N !∏K
i=1 ni!

K∏
i=1

θ̃i
ni (6)

where K is the total number of states, and N =
∑K

i=1 ni is
the total number samples with ni being the number of sam-
ples for state i. θ̃i are the modified parameters of the multi-
nomial distribution. θ̃i =

g(ni,α)
g(N,Kα) with g(ni, α) = ani + bα

where Λ =

(
a
b

)
are unknown coefficients. By plugging the

P (D|α) (defined in Eq. 2) into Eq. 6, it is clear that to satisfy
Eq. 6, we must have ni ln g(ni, α) = lnΓ(ni+α)− ln Γ(α).
Given {ni}Ki=1 and α, we can construct a system of K such
equations through which we can solve for Λ∗, i.e.,

Λ∗ = argmin
Λ

||MΛ− T ||22 = (M tM)−1M tT (7)

with M =

n1, α
n2, α
...

nK , α

, T =

 t(n1, α)
t(n2, α)
...

t(nK , α)

, and t(ni, α) =

exp( 1
ni
(ln Γ(ni + α) − ln Γ(α))). Given Λ∗, we have θ̃i as

θ̃i =
g(ni,α)
g(N,Kα) = a∗ni+b∗α

a∗N+b∗Kα . P (D|θ̃) can well approximate
P (D|α). Our proposed approximation is different from the
method provided in [Minka, 2000] where the Polya distribu-
tion P (D|α) is interpreted as a multinomial distribution with
modified counts ñi. In addition, our proposed estimation can
better approximate the Polya distribution given the symmetric
Dirichlet prior compared to [Minka, 2000]. We then approxi-
mate the hypothesis likelihood under null and alternative hy-
pothesis respectively and obtain a modified Bayes Factor B̃F

B̃F =
P (D|θ̃, H0)

P (D|θ̃, H1)
=

∏Kx

i=1 θ̃i
ni ∏Ky

j=1 θ̃j
nj∏KxKy

i=1,j=1 θ̃ij
nij

(8)

We obtain the statistic BFchi2 for the statistical test as,

BFchi2 = −2 ln B̃F = −2

Kx∑
i=1

Ky∑
j=1

nij ln
θ̃iθ̃j

θ̃ij
(9)

The statistic BFchi2 asymptomatically follows the
χ2
df=(Kx−1)(Ky−1) distribution. If p-value is smaller

than the significance level, we reject the null hypothesis and
accept the alternative hypothesis. It is worth noting that BF
can be directly applied for a frequentist independence test
where a pre-defined threshold η is required [Natori et al.,
2017]. The value of the threshold is unconstrained [Kass
and Raftery, 1995] making it hard to be properly selected.
Instead, our approach only requires a significant level for
independence test which is usually set to be 5% by default.
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SHD #Independence Test
Dataset Size cIeB cBFchi2 CMB cIeB cBFchi2 CMB

CHILD 100 2.90±0.28 2.65±0.40 5.94±0.65 1008 1154 16869
300 2.61±0.26 2.64±0.59 6.95±0.63 1709 1926 14578
500 2.29±0.31 2.24±0.84 4.52±0.58 2524 4751 13873

MEAN 2.60 2.51 5.80 1747 2610 15107

INSURANCE 100 3.89±0.34 3.98±0.39 7.18±0.66 1261 1363 22168
300 3.47±0.21 3.24±0.12 7.59±0.57 1541 2977 18043
500 3.11±0.21 2.98±0.13 7.20±0.67 1477 3949 14881

MEAN 3.49 3.40 7.32 1426 2763 18364

ALARM 100 2.69±0.07 2.39±0.19 5.20±0.71 1424 1109 27492
300 2.50±0.19 2.27±0.15 4.36±0.83 2398 3885 14900
500 2.40±0.11 2.26±0.19 3.53±0.62 2807 4766 11328

MEAN 2.53 2.31 4.36 2210 3253 17907

HAILFINDER 500 3.33±0.02 4.22±0.04 7.90±0.11 676 1923 183350
800 3.56±0.01 4.49±0.13 7.12±0.09 1098 2145 169705

1000 3.56±0.09 4.45±0.08 7.10±0.11 1924 2621 119815
MEAN 3.48 4.39 7.37 1233 2229 157620

CHILD3 500 2.46±0.23 2.53±0.18 4.72±0.28 7168 7417 14789
800 3.01±0.13 2.67±0.11 3.57±0.21 6720 7802 9765

1000 2.90±0.07 2.57±0.23 3.09±0.19 8424 8285 9516
MEAN 2.79 2.59 3.79 7437 7835 11357

CHILD5 500 2.87±0.05 2.62±0.19 5.00±0.15 5234 11126 16819
800 2.66±0.21 3.02±0.13 5.75±0.32 8236 11424 51967

1000 2.82±0.23 2.99±0.07 4.34±0.19 13384 9956 36888
MEAN 2.78 2.88 5.03 8951 10835 26322

Table 1: Local causal discovery performance under insufficient data

4 Experiments
We evaluate both the local and global constraint-based causal
discovery performance on benchmark datasets. Through ex-
haustive experiments, we show that our approaches can sig-
nificantly improve causal discovery performance in terms of
both accuracy and efficiency over state-of-the-art methods.
Besides, we compare proposed independence tests to state-
of-the-art independence tests to further show the effectiveness
of the proposed methods.
Experiment Settings. We employ six benchmark datasets1

that are widely used for causal discovery evaluation:
CHILD, INSURANCE, ALARM, HAILFINDER, CHILD3
and CHILD5. The causal discovery performance is evaluated
in terms of both accuracy and efficiency. For accuracy, we
employ the structural hamming distance (SHD) [Tsamardi-
nos et al., 2006a]. SHD computes the number of extra and
incorrect (missing and reverse) edges in the learned causal
structure compared to the ground truth one. For efficiency, we
consider the number of conducted independence test. We per-
form evaluation on a number of small sized datasets. These
small sample sizes are chosen to mimic insufficient data sce-
nario through significantly small number of samples per con-
figuration. For each sample size, we repeat 10 runs and report
the averaged performance over 10 runs. In addition, we report
standard derivation of SHD. Experiments are performed on a
laptop with a 8-Core Intel Core i9 processor with CPU only.

1https://www.bnlearn.com/bnrepository/.

4.1 Local Constraint-based Causal Discovery

For the local causal discovery, we employ Causal Markov
Blanket (CMB) [Gao and Ji, 2015], which is the state-of-
the-art method. CMB employs constraint-based approach and
performs conditional independence test using MI to identify
the CMB of a target node. We incorporate the proposed inde-
pendence tests into CMB and compare to the original CMB.
We denote cIeB as the CMB with empirical Bayesian MI
estimation and cBFchi2 as CMB with BFchi2 independence
test. SHD is 0 if learned CMB is identical to the ground truth
CMB.

From Table 1, we can see that both cIeB and cBFchi2 out-
perform the CMB on all datasets in terms of both accuracy
and efficiency under insufficient data. The number of per-
formed independence test reduces dramatically. On ALARM
dataset, cIeB only performs 2210 independence tests on av-
erage, while CMB requires 17907 tests on average. The pro-
posed methods improve the accuracy significantly. On IN-
SURANCE dataset, cBFchi2 improves the averaged SHD by
3.92 compared to CMB. From the results we can see that, by
introducing Bayesian approaches, both the accuracy and the
efficiency can be improved. Comparing the performance be-
tween the two proposed methods, cBFchi2 achieves overall
better accuracy, and cIeB is more efficient with the fewest
number of independence test on all datasets.

It is worth noting that the number of independence test in-
creases with reduced samples in CMB, but decreases with the
proposed methods. The reason is that under insufficient data,
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SHD #Independence Test
Dataset Size rIeB rBFchi2 RAI-BF PC-Stable rIeB rBFchi2 RAI-BF PC-Stable

CHILD 100 21.6±2.1 24.2±2.3 30.4±3.7 23.8±1.7 283 314 893 559
300 19.9±2.7 17.7±1.8 23.5±4.4 22.6±1.9 342 546 997 986
500 17.6±1.7 16.0±2.9 22.6±2.4 24.4±2.2 424 754 975 1317

MEAN 19.7 19.3 25.5 23.6 350 538 955 954

INSURANCE 100 48.9±1.3 50.1±2.9 54.9±3.6 52.0 ±1.5 486 604 905 1217
300 47.3±0.8 44.5±2.0 46.6±3.2 50.2±3.1 576 986 1011 1250
500 49.5±1.8 39.4±3.0 47.1±2.2 50.7±2.5 662 1200 1120 2326

MEAN 48.6 44.7 49.5 51.0 575 930 1012 1598

ALARM 100 44.5±2.2 42.7±2.3 48.4±5.8 45.8 ±4.9 891 958 1591 2215
300 40.7±3.0 36.1±4.5 35.3±5.4 34.6±2.7 1158 1752 1881 3398
500 40.0±3.1 29.8±5.1 29.8±5.2 36.5 ±5.7 1433 2018 2098 3992

MEAN 41.7 36.2 37.8 39.0 1161 1576 1857 3202

HAILFINDER 500 88.0±2.0 98.3 ±1.5 118.0±1.0 91.6±1.0 2024 2587 6171 3267
800 85.0±1.7 106.3 ±2.1 124.7 ±6.7 99.7±1.2 1983 3726 7847 3423
1000 92.3±4.5 108.3 ±2.3 131.3 ±3.2 101.8±2.2 2638 3073 16618 3603

MEAN 88.4 104.3 124.7 97.7 2215 3129 10212 3431

CHILD3 500 67.6±3.2 54.3±2.6 79.6±4.9 81.2±2.8 2693 3796 5422 4963
800 65.8±2.5 52.9±2.8 74.0±3.7 79.9±2.4 3941 4587 5106 6026
1000 61.5±3.8 52.3±3.9 71.0±6.5 81.4±2.7 4723 5170 5980 6846

MEAN 65.0 53.2 74.9 80.8 3786 4518 5503 5945

CHILD5 500 122.0±2.6 109.3±5.1 134.0 ±2.6 113.9±2.4 6966 8646 10038 10253
800 121.7±3.8 105.3±4.0 132.3±6.7 120.1±2.9 10249 10431 9337 10708
1000 116.3±2.9 105.7±2.5 126.3±7.0 123.4±1.7 10375 10494 11174 11070

MEAN 120.0 106.8 126.3 119.1 9197 9857 11174 10677

Table 2: Global causal discovery performance under insufficient data

MLE will lead to an overestimated MI. Hence, conventional
MI based independence test is likely to declare dependence
when data size is small, resulting in a large number of inde-
pendence test. As the sample size increases, the incorrect
dependency declarations will be corrected and the number
of independence tests will decrease. On the other hand, our
methods are more accurate and show a preference of inde-
pendence under insufficient data, resulting a small number of
performed independence test.

4.2 Global Constraint-based Causal Discovery
Majority of global causal discovery algorithms are under
causal sufficiency assumption, whereby all random variables
are observed in data and there is no latent variable. How-
ever, causal sufficiency assumption can be violated since
the real data may fail to capture the values for all the vari-
ables, leaving some variables to be latent. To address this
issue, several recent causal discovery methods [Ramsey et
al., 2012; Colombo et al., 2012] have been developed to
identify latent common confounders of the observed vari-
ables. In our evaluations, we mainly focus on standard al-
gorithms that are under causal sufficiency assumptions. We
firstly employ RAI [Yehezkel and Lerner, 2009] as our base-
line and compare to two state-of-the-art methods. Then,
to demonstrate that our proposed methods can consistently
improve causal discovery performance, we consider well-
known DAG learning algorithms: PC [Spirtes et al., 2000]
and MMHC [Tsamardinos et al., 2006b] as two additional
baselines. In the end, we consider the algorithms without
causal sufficiency assumption to demonstrate that our pro-
posed methods can be applied to different causal discovery

methods, independent of the existence of latent confounders.

Global causal discovery with causal sufficiency assump-
tion. We employ RAI as our baseline algorithm and incor-
porate the proposed independence tests. We denote rIeB
as the RAI with empirical Bayesian MI estimation, and
rBFchi2 as RAI with BFchi2 independence test. We com-
pare our approaches to two state-of-the-art methods: RAI-
BF method [Natori et al., 2017] and PC-stable [Colombo and
Maathuis, 2014]. SC-PC can’t be performed under insuffi-
cient data smoothly, and thus we exclude this method for
comparison. SHD is 0 if the learned DAG and the ground
truth DAG belong to the same equivalence class.

From Table 2, we can see that rBFchi2 outperforms RAI-
BF and PC-stable on almost all datasets in terms of both
accuracy and efficiency. rIeB also achieves overall better
accuracy and significantly improves efficiency. For exam-
ple, on CHILD3, rBFchi2 improves the SHD by 21.7 and
27.6 compared to RAI-BF and PC-stable. In terms of effi-
ciency, on HAILFINDER, rIeB only performs 2215 inde-
pendence tests in average, while RAI-BF requires 10212 tests
in average. Comparing between the two proposed methods,
rBFchi2 achieves better accuracy and rIeB achieves better
efficiency. With the proposed methods, the number of in-
dependence tests decreases due to the reduced samples for
all datasets, which is consistent with the conclusion we have
from the local causal discovery. In addition, both RAI-BF and
PC-stable show a preference of independence under insuffi-
cient data, leading to the decreased number of independence
tests with reduced number of samples.

SinceBFchi2 essentially is only an approximate of original
BF, BF with the optimal threshold should outperform BFchi2
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in principle. However, selecting the optimal threshold for
BF can be challenging and incorrect thresholds can lead to
inferior causal discovery performance. Instead of fixing the
threshold of RAI-BF with its default value, we consider the
optimal performance of RAI-BF with tuned thresholds for
comparison. According to the experimental results, RAI-BF
with the optimally tuned threshold at best achieves compara-
ble performance compared to rBFchi2 in terms of both accu-
racy and efficiency, which is expected. While rBFchi2 only
requires a fixed significance level (5% by default) without ad-
ditional tuning process.

To further show that our proposed methods can consis-
tently improve the causal discovery performance, we con-
sider another two widely used DAG learning algorithms:
PC [Spirtes et al., 2000] and MMHC [Tsamardinos et al.,
2006b]. We incorporate the proposed methods into PC and
MMHC for evaluation. According to the experimental re-
sults, our proposed methods can consistently improve the
DAG learning performance, particularly with PC. For exam-
ple, on ALARM, PC with BFchi2 achieves averaged SHD
40.5, while PC only achieves averaged SHD 58.2. Overall,
BFchi2 achieves better accuracy and IeB achieves better ef-
ficiency with both PC and MMHC on different datasets.
Global causal discovery without causal sufficiency as-
sumption. To demonstrate that our robust independent tests
can also be applied to causal discovery without causal suffi-
ciency assumption, we employ the conservative FCI (cFCI)
method [Ramsey et al., 2012] as our baseline. cFCI is con-
sidered as the state-of-the-art causal discovery algorithm that
identifies latent confounders. We denote cIeB as the cFCI

Dataset SHD #Independence Test
(MEAN) cIeB cBFchi2 cFCI cIeB cBFchi2 cFCI
CHILD 49.1 35.1 50.4 109 417 2289

INSURANCE 118.7 94.9 121.3 147 593 4836
ALARM 105.3 78.2 94.7 397 902 7361

HAILFINDER 153.2 220.2 339.0 368 2024 82683
CHILD3 204.3 135.2 103.6 692 2858 4009
CHILD5 250.7 159.0 178.8 1145 5161 7068

Table 3: Global causal discovery performance (with latent con-
founder) under insufficient data

with empirical Bayesian MI estimation, and cBFchi2 as cFCI
with BFchi2 independence test. We compare our approaches
to cFCI with default g2 statistical based independence test2.
As we can see from Table 3, cIeB achieves best efficiency
by performing the smallest number of independence tests.
In terms of accuracy, cBFchi2 achieves overall better per-
formance. The consistent performance improvement further
demonstrates that the proposed independence test can im-
prove the causal discovery performance under insufficient
data, independent of the existence of latent confounders.

4.3 Bayesian Approaches for Independence Tests
To compare the proposed independence tests to state-of-the-
art methods, we firstly perform a direct evaluation of pro-
posed independence tests on synthetic data, and we then com-
pare to state-of-the-art methods in terms of causal discovery

2https://github.com/striantafillou/causal-graphs.

performance on benchmark datasets. On synthetic data, we
compare to three state-of-the-art independence tests: adaptive
partition [Seok and Seon Kang, 2015], empirical Bayesian
with fixed α [Hutter, 2002] and full Bayesian method [Archer
et al., 2013]. We evaluate the performance in terms of both
accuracy and efficiency. Experimental results show that the
proposed methods achieve better accuracy with significantly
improved efficiency. More importantly, we compare pro-
posed independence tests to two state-of-the-art methods:
adaptive partition and empirical Bayesian with fixed α meth-
ods in terms of causal discovery performance on benchmark
datasets. Because the full Bayesian method is of high com-
putational complexity, making it impractical to be applied
to constraint-based causal discovery, we exclude the com-
parison to this method. We incorporate the adaptive parti-
tion method and the empirical Bayesian with fixed α method
to RAI (denoted as rIAdP and rIeBFix respectively). As

Dataset SHD
(MEAN) rIAdP rIeBFix rIeB rBFchi2 RAI-BF
CHILD 26.5 23.9 19.7 19.3 25.5

INSURANCE 53.2 49.1 48.6 44.7 49.5
ALARM 46.9 40.9 41.7 36.2 37.8

HAILFINDER 70.8 91.2 88.4 104.3 124.7
CHILD3 81.6 66.3 65.0 53.2 74.9
CHILD5 129.9 121.6 120.0 106.8 126.3

Table 4: Accuracy comparison to SoTA independence tests

shown in Table 4, our methods achieve overall better accuracy
than rIAdP and rIeBFix on different datasets. For example,
on CHILD3, rBFchi2 achieves averaged SHD 53.2, signifi-
cantly better than rIAdP which achieves averaged SHD 81.6.
In terms of efficiency evaluation, rIeB also achieves compet-
itive efficiency. Overall, our proposed methods outperform
other SoTA independence tests in terms of causal discovery
performance. On HAILFINDER, because rIAdP tends to
declare independence, the learned DAG contains fewer false
positive edges compared to other methods and thus its aver-
aged SHD is the best.

5 Conclusion

In this paper, we introduce Bayesian methods for robust
constraint-based causal discovery under insufficient data.
Two Bayesian-augmented frequentist independence tests are
proposed for reliable statistic estimation under a frequentist
independence test framework. Specifically, we propose: 1)
an effective empirical Bayesian method for accurate estima-
tion of mutual information under limited data; 2) a Bayesian
statistical testing method for independence test by formu-
lating the Bayes Factor into the well-defined χ2 statistical
test. We apply the proposed methods to both local and
global causal discovery algorithms and evaluate their perfor-
mance against state-of-the-art methods on different bench-
mark datasets. The experiments show that, by introducing
Bayesian approaches, the proposed methods not only outper-
form the competing methods in terms of accuracy, but also
improve efficiency significantly.
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