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Suturing skill scores have demonstrated strong predictive capabilities for patient functional recovery.
The suturing can be broken down into several substep components, including needle repositioning,
needle entry angle, etc. Artificial intelligence (AI) systemshavebeen explored to automate suturing skill
scoring. Traditional approaches to skill assessment typically focus on evaluating individual sub-skills
required for particular substeps in isolation. However, surgical procedures require the integration and
coordination of multiple sub-skills to achieve successful outcomes. Significant associations among
the technical sub-skill have been established by existing studies. In this paper, we propose a
framework for joint skill assessment that takes into account the interconnected nature of sub-skills
required in surgery. The prior known relationships among sub-skills are firstly identified. Our proposed
AI system is then empowered by the prior known relationships to perform the suturing skill scoring for
each sub-skill domain simultaneously. Our approach can effectively improve skill assessment
performance through the prior known relationships among sub-skills. Through the proposed
approach to joint skill assessment, we aspire to enhance the evaluation of surgical proficiency and
ultimately improve patient outcomes in surgery.

Skill assessment is a fundamental aspect of surgical education and training,
playing a pivotal role in evaluating the proficiency and competency of
surgeons. Importantly, it has been demonstrated as a valuable and strong
predictor for patient clinical outcomes1–3, underscoring its significance in
ensuring optimal patient care. In a notable instance, manually assessed
suturing technical skill scores emerged as the most robust predictors of
patient continence recovery after a robot-assisted radical prostatectomy,
outperforming other objective metrics of surgeon performance4. The need
to automate skills assessment is evident, given that manual evaluations by
expert raters are subjective, time-intensive, and lack scalability5,6. In recent
years, advanced artificial intelligence (AI) systems have been leveraged to
automate surgery technical skill scoring7,8, offering thepotential for objective
and efficient assessments. To enable a more precise evaluation of suturing
technical skills, the process of suturing is usually deconstructed into
substeps.

Considering three major sub-skill domains: needle handling, needle
driving, and needle withdrawal, they are further divided into six sub-skills9.
Needle handling involves three sub-skills: 1) needle repositioning represents

howmany times the needle exchange hands; 2) needle hold ratio represents
if the holding is between 1/2 and 1/4 of a needle; 3) needle hold angle
measures the needle anglewith respect to tissue.Needle driving involves two
sub-skills: 4) driving smoothness represents how smooth the needle drive in
and out of tissue; 5) wrist rotation represents smooth wrist rotation during
entry. Lastly, needle withdrawal involves one sub-skill: 6) wrist rotation
needle withdrawal (nw) represents smooth wrist rotation during exit. We
summarize sub-skill domains and sub-skills in Fig. 1. For existing systems,
skill assessment has predominantly focused on the evaluation of individual
sub-skills required for each substep in isolation. These methods provide
valuable insights into the technical abilities of surgeons. However, the
complex nature of surgical procedures necessitates a more comprehensive
assessment approach that considers the integration and coordination of
multiple sub-skills.

The successful outcomes of surgical procedures are contingent upon
the integration and coordination of multiple sub-skills. Notably, existing
study has revealed that technical skill scores between substeps of the
suturing process are significantly associated9, further highlighting the
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relationships within the suturing workflow. For example, when needle hold
angle is ideal, needle withdrawal has a significantly greater chance of being
ideal. These findings emphasize the relationships among the technical sub-
skills involved in completing various substeps of suturing. Consequently,
machine learning efforts are expected to enhance automated skill assess-
ment performance by harnessing these relationships and leveraging the
power of data-driven approaches.

Examining the currentdeep learning techniques, graphneuralnetworks
(GNNs) have emerged as a powerful framework for capturing relationships
in various domains, including social networks10, molecular chemistry11,12,
recommendation systems13, and natural language processing14. Traditional
neuralnetworks (e.g., convolutionalneuralnetwork15) areprimarilydesigned
for analyzing data with a grid-like structure, such as images16 or sequences17.
They struggle to effectively model complex relationships among entities
represented ingraph structures.GNNs, on theother hand, excel at leveraging
the inherent relationships present in graph data18,19. Given a graph structure,
by propagating information through this structure, GNNs enable the
modeling of hidden features basedon their local neighborhoods. This unique
ability to utilize relationships makes GNNs well-suited for tasks that require
understanding complex relationships and interactions among entities. Lots
of variants of GNNs are proposed, and among them, the graph attention
network (GAT) has achieved a huge attention due to its embedded attention
mechanism20. In this paper, we delve into the GAT and study its impact on
utilizing relationships among surgical sub-skills for joint skill assessment. It is
important to emphasize that our approach, while falling under the umbrella
ofmulti-task learning, distinguishes itself from existing developments on the
public JIGSAWSdataset21. Thosemulti-task pipelines primarily consider the
recognition of synchronized surgical gestures22,23 as the additional task. To
the best of our knowledge, our work represents a pioneering effort in multi-
task learning by considering the intricate relationships that exist among
surgical sub-skills.

In this study, we propose a framework for joint skill assessment that
takes into account the interconnected nature of sub-skills required in

surgery. Our approach can be applied to any individual skill assessment
baselines. Given the known relationships between sub-skills as our prior, we
embed them as a graph structure and leverage the GAT for joint skill
assessment. Given the fact that the strength of associations can vary, the
GAT helps automatically adjust the strength of associations through its
attentionmechanism.When available, kinematic information is introduced
for joint skill assessment to help refine the strength of associations and
enhance the performance. The overview of the proposed method is shown
in Fig. 2. We evaluated the proposed framework using virtual reality (VR)
videos collected from a VR simulator, specifically focusing on the surgical
procedure of robot-assisted radical prostatectomy. Through evaluation, the
proposed framework, serving as a surgical education assessment tool, is
effective for surgical education and training.

Results
Prior known relationships among sub-skills
We firstly define the prior known relationships among sub-skills. In Fig. 2
(Part c), we visualize the prior known relationships among sub-skills. Solid
links represent the relationships. As shown, the associations between sub-
skills are reasonably well aligned with our prior work demonstrating the
inter-skill relationships within suturing9. For example,wrist rotation needle
withdrawal is associated with hold angle directly.

Joint skill assessment helps improve skill assessment
performance
We study the effectiveness of relationships among sub-skills in improving
skill assessment performance.We leverage the known relationships (i.e., the
edges in Fig. 2 Part c) as our prior to define the association among nodes. In
particular, the prior known relationships consists of three pairs: hold ratio
and hold angle, hold angle and driving sequence, hold angle and wrist
rotation.

We compare the skill assessment performance for six different sub-
skills before and after performing the joint skill assessment. We report the

Fig. 1 | Sub-skill domains and sub-skills.
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average assessment accuracy for each skill over five different institutions in
Table 1. As shown, on average over six different sub-skills, the assessment
performance improves by leveraging the relationships.Most of the sub-skills
achieve improved assessment accuracy by leveraging the prior known
relationships. For example, needle hold angle achieves 6% improvements
because of informative information collected from its neighboring sub-skills

(i.e., needle hold ratio, driving smoothness, andwrist rotation) through joint
skill assessment.

Furthermore, for each of the 5 institutions that have contributed data,
we visualize the skill scoring for each sub-skill. As shown in Fig. 3, joint skill
assessment helps improve performance across different institutions.Needle
hold angle andwrist rotation achieve performance improvements atmost of
the institutions. For example, wrist rotation improves 19.6% and 13.5% at
institution D and E, respectively.

Learnable attention weights in GAT help adjust association
strength
Though we define the prior known relationships among sub-skills, the
association strength among sub-skills could vary. The learnable attention
mechanism allows for adjustable weights to better perform the joint skill
assessment. For comparison, we consider the baseline model without any
learnable attention mechanism. The strength of the relationships is fixed to
one and doesn’t vary. We report the average skill assessment performance
across five institutions in Table 2.

As shown, adjusting the strength of association through learnable
attention mechanism help perform effective skill assessment. Most of the
sub-skills achieve improved performance through adjustable association
strength. For example, needle hold angle and needle driving smoothness

Fig. 2 | Overview of the joint skill assessment. a Input videos clips for each sub-
skills that are within a natural suturing. bExtraction of isolated features for each sub-
skill from videos. There is no relationship among sub-skills during feature extrac-
tion. c Incorporation of prior known relationships, that indicate the association
among sub-skills. d Graph attention network given specified prior known

relationships among sub-skills. Attention mechanism automatically adjusts the
strength of the association among sub-skills. Kinematic information is introduced as
additional input for the graph attention network to further enhance the joint skill
assessment. e Final skill assessment given the updated features from the graph
attention network.

Table 1 | Compare joint skill assessment performance to
independent skill assessment performance

Sub-skill Independent Joint (Ours)

Needle Repositioning 0.72 ± 0.09 0.80 ± 0.03

Needle Hold Ratio 0.57 ± 0.04 0.60 ± 0.03

Needle Hold Angle 0.53 ± 0.05 0.59 ± 0.04

Needle Driving Smoothness 0.87 ± 0.05 0.86 ± 0.04

Wrist Rotation 0.57 ± 0.05 0.64 ± 0.06

Wrist Rotation Needle Withdrawal 0.64 ± 0.07 0.69 ± 0.04

MEAN 0.65 ± 0.02 0.70 ± 0.02

Boldfaced denotes best and ± are standard deviations across 5 held-out institutions (AUC).
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improve performance compared to the one without leveraging attention
mechanism. Thoughwe leverage the prior known relationships among sub-
skills, the strength of these relationships can vary across different institu-
tions, hence adopting the attention mechanism for adjustable association
strength helps.

Relationships generalize across different institutions
To further study the effectiveness of the relationships across different
institutions, for each institution, we visualize the attentions among different
sub-skills in Fig. 4. For each sub-skill, it can only pay attention to its
neighboring sub-skills defined by the prior relationships and itself. The off-

Fig. 3 | Comparing joint skill assessment performance to independent skill assessment performance at each institution. a–e Performance at Institution A–E. TheX-axis
represents six different sub-skills. The Y-axis represents the AUC score.
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diagonal values in the attention map represent the associations between
each sub-skill and its neighboring sub-skills, while the diagonal values
denote the association of each sub-skill with itself. The attention values vary
and are learned during training. It is worth noting that the diagonal atten-
tion valuesmay not always surpass the off-diagonal values. In the case of the
sub-skill needle hold angle, its weak self-association implies that the infor-
mation from its neighboring sub-skills (i.e., needle wrist rotation) holds
more weight in skill assessment than its own information. For comparison,
we visualize the prior relationships among sub-skills in Fig. 4a.

Interestingly, we observe some common patterns in attention maps
that are shared across different institutions. The diagonal values are usually
stronger than the off-diagonal values, particularly for sub-skill 2 (needle hold
ratio), sub-skill 4 (needle driving sequence) and sub-skill 5 (wrist rotation).
For sub-skill 3 (needle hold angle), it is likely to have stronger association
with its neighboring sub-skills than itself. For example, at institution A and
D, the association between sub-skill 3 (needle hold angle) and sub-skill 2

(needle hold ratio) is stronger. At institutions B and C, the association
between sub-skill 3 (needle hold angle) and sub-skill 5 (wrist rotation) is
stronger. Besides, the off-diagonal values are almost symmetric, particularly
for the pair sub-skill 3 (needle hold angle) and sub-skill 4 (needle driving
smoothness).

Kinematics helps joint skill assessment
We study the effectiveness of the kinematic (i.e., the instrument
motion-tracking data) in joint skill assessment. The prior known
relationships define the association among sub-skills. Besides, kine-
matic data is introduced to help refine the association strength and
further enhance skill assessment performance. We compare the
performance of joint skill assessment with videos only and with
videos plus kinematic data. We report the average skill assessment
performance across five institutions in Table 3.

As shown, performing joint skill assessment with kinematics leads to
significantly improved performance. For most of the sub-skills, the per-
formance is improvedwithkinematics. For example, bothwrist rotation and
wrist rotation needle withdrawal improves 3%. Besides, it is also worth
noting that, without kinematics, the joint skill assessment still achieves
performance improvement on average compared to the independent skill
assessment (0.67 versus 0.65).

Effectiveness in improving patient outcomes
To compare the effectiveness of our proposed automated suturing skills
assessment approach against human ratings in predicting postoperative
outcomes, we have expanded our analysis to include 3-month patient
continence recovery after robot-assisted radical prostatectomy (RARP). All
surgeonswho contributedVR suturing skill demonstration also contributed
functional recovery data for their patients after RARP.We first examine the
association between EASE skill scores (generated by our model or human

Table 2 | Effectiveness of learnable attention weights in GAT

Sub-skill w/o Attention w Attention

Needle Repositioning 0.79 ± 0.06 0.80 ± 0.03

Needle Hold Ratio 0.60 ± 0.05 0.60 ± 0.03

Needle Hold Angle 0.54 ± 0.06 0.59 ± 0.04

Needle Driving Smoothness 0.83 ± 0.07 0.86 ± 0.04

Wrist Rotation 0.62 ± 0.07 0.64 ± 0.06

Wrist Rotation Needle Withdrawal 0.70 ± 0.04 0.69 ± 0.04

MEAN 0.68 ± 0.05 0.70 ± 0.02

Boldfaced denotes best and ± are standard deviations across 5 held-out institutions (AUC).

Fig. 4 | Visualization of relationships among sub-skills. Each row (and column)
represents one sub-skill. For clarity, we use abbreviation RP, HR, HA, DS, WR, WRnw
to respectively index six sub-skills: needle repositioning, needle hold ratio, needle hold
angle, needle driving smoothness, wrist rotation, wrist rotation needle withdrawal.
The value in i-th row and j-th column represents the association from i-th sub-skill

to j-th sub-skill. a Shows the prior known relationships among six sub-skills, whose
elements are of value one or zero, indicating the existence of an edge between two
nodes or not. b–f The attention map among sub-skills for each institution. Each
element of the attentionmap is of valuewithin the range of [0,1]. The deeper the blue,
the stronger the association.
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raters) and the 3-month continence recovery. The results are displayed in
Tables 4 and 5, respectively. As shown, our automated EASE scores
demonstrate significant association with 3-month continence recovery
across three skill domains (P-value < 0.05), whereas human-generated
EASE scores exhibit significant association in only one domain. This dis-
parity underscores the strengthened association of ourmodelwith 3-month
continence recovery and highlights its potential to inform surgical training
strategies and improve patient outcomes.

We further assess the predictive accuracy of EASE scores (from our
model orhumanraters) for3-monthcontinence recovery.TheROCcurve is
plotted in Fig. 5. Our analysis reveals comparable performance between our
proposedmodel and the human ratings, both achieving an AUC of 0.68 for
predicting 3-month continence recovery, with patient features adjusted (i.e.,
age, BMI, PSA, and prostate volume). This equivalence in performance
underscores the effectiveness of our proposedmodel in predicting 3-month
continence recovery, aligning closely with the predictive capabilities of
experienced human evaluators.

Discussions
Skill assessment is an essential part of surgery to identify the competence of
the surgeons. It has important implications for surgical training, surgeon
accreditation, and patient outcomes. However, manual suturing skill
assessments carried out by experienced surgeons require a deep under-
standing acquired through years of practice, and laborious process prone to
observer biases.With the development ofAI systems in recent years, there is
a need to automate the process of skills assessment by levaraging the
learning power of AI through data. Several papers previously examined
different models to perform skills assessment tasks and established various
baseline models. The prior research work on this topic evaluated the skills
independently. With well-established relationships between sub phases of
suturing, we explore the possibility of incorporating such prior known
relationships for joint skill assessment through the graph attention network.

To perform joint skill assessments, we perform graph convolution on
top of the individual sub-skill assessment. We perform 5-fold cross-vali-
dation given data collected from five institutions.We observe that joint skill
assessment helps improve the performance consistently compared to
individual skill assessment performance across different institutions.
Notably, our findings also reveal commonalities in the strength of associa-
tions shared among different institutions. Numerous studies have been
undertaken to evaluate the effectiveness of each component within the
proposed model. A summary of these findings is provided in the Table 6,
offering overall insights into the contribution of individual elements to the
overall performance. Additionally, calibration plots for each sub-skill are
appended (Supplementary Fig. 1), offering a visual depiction of calibration
performance and further enhancing the comprehensiveness of the analysis.

Although joint skill assessment shows improvement compared to
individual assessments, its performance is notably affectedby the strengthof
associations. This sensitivity can be attributed to the attention weights used

Table 4 | Association between automated EASE scores gen-
erated by our model (denoted as “AI") and the 3-month con-
tinence recovery

AI Rate ratio 95% Confidence Interval p value

RP 1.868 1.249–2.793 0.002

HR 0.555 0.301–1.022 0.059

HA 0.207 0.037–1.166 0.074

DS 0.538 0.334–0.868 0.011

WR 3.986 1.007–15.782 0.049

WRnw 1.885 1.158–3.067 0.011

For clarity, we use abbreviation RP, HR, HA, DS, WR, WRnw to respectively index six sub-skills: needle
repositioning, needle hold ratio, needle hold angle, needle driving smoothness, wrist rotation, wrist
rotation needle withdrawal.

Table 5 | Association between EASE scores generated by
human raters (denoted as “Human”) and the 3-month con-
tinence recovery

Human Rate Ratio 95% Confidence Interval p value

RP 1.933 1.288–2.902 0.001

HR 1.032 0.648–1.642 0.895

HA 0.761 0.532–1.087 0.133

DS 0.821 0.257–2.62 0.739

WR 1.617 0.954–2.741 0.074

WRnw 0.827 0.546–1.253 0.37

For clarity, we use abbreviation RP, HR, HA, DS, WR, WRnw to respectively index six sub-skills: needle
repositioning, needle hold ratio, needle hold angle, needle driving smoothness, wrist rotation, wrist
rotation needle withdrawal.

Table 3 | Effectiveness of kinematics in joint skill assessment

Sub-skill Videos Videos+Kim.

Needle Repositioning 0.74 ± 0.07 0.80 ± 0.03

Needle Hold Ratio 0.59 ± 0.04 0.60 ± 0.03

Needle Hold Angle 0.52 ± 0.06 0.59 ± 0.04

Needle Driving Smoothness 0.88 ± 0.04 0.86 ± 0.04

Wrist Rotation 0.61 ± 0.07 0.64 ± 0.06

Wrist Rotation Needle Withdrawal 0.66 ± 0.05 0.69 ± 0.04

MEAN 0.67 ± 0.02 0.70 ± 0.02

Boldfaced denotes best and ± are standard deviations across 5 held-out institutions (AUC).

AI EASE Score
AUC = 0.68

(95% CI 0.65 – 0.72)

Human EASE Score
AUC = 0.68

(95% CI 0.64 – 0.72)

ROC Curve

Fig. 5 | The predictive accuracy of EASE scores for 3-month continence recovery.
AI EASE scores represent the EASE scores generated by our proposed model, and
human EASE scores represent the EASE scores from human raters.
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in the joint skill assessment.Wehypothesize that the strengthof associations
varies across different institutions. Hence, employing a learnable attention
mechanism can help enhance the effectiveness of joint skill assessment. Our
results validate our hypothesis by showing that an attention mechanism
contributes to an average performance improvement of 2%, in comparison
to a scenario where attention weights are fixed at one (Table 2). This
demonstrates the significance of adapting attention weights through
learning andunderscore the pivotal role of associations strength in joint skill
assessment.Notably, the significanceof attentionmechanismdependson its
complexity and its inputs. In our work, it is a shallow neural network, only
employed for adjusting the associations strength among six sub-skill. Thus,
its effectiveness may not as compelling as the ones employed for temporal
modeling8.

Additionally, we observe that driving smoothness doesn’t exhibit a
substantial performance improvement through joint skill assessment. This
can be attributed to the fact that the individual assessment of driving
smoothness already achieves a remarkable performance with AUC 87%.
Through our investigations, we observe that joint skill assessment demon-
strates heightened effectiveness particularly for sub-skills that can not be
robustly assessed in isolation.

The major limitation of the present work is rooted in the reliance of
joint skill assessment on kinematic data to achieve notable performance
gains. As shown, when kinematic data is omitted, the average enhancement
achieved by joint skill assessment is 2% compared to the individual skill
assessment. While when kinematic data is harnessed, the average
improvement escalates to 5%. From these studies, we observe that the
efficacy of joint skill assessment hinges on the nature of input information.
Besides, the prior known relationships among sub-skills are determined
offline and remain fixed throughout training. This can potentially be a
limitation as the relationships among sub-skills are assumed to be same
across different institutions.

Another limitation of our study pertains to the medical insights
derived, which are specific to the urological procedure under examination.
While we delved into the correlation with urinary continence outcomes in
urology, this association remains confined within the scope of urological
practice. However, from a technical standpoint, the deep learning pipeline
proposed in our study exhibits inherent adaptability to various procedures
and is not confined to any particular virtual platform; it can apply to plat-
forms like da Vinci. Furthermore, our VR exercise concentrated on tube
suturing, a skill agnostic to any surgical specialty, indicating its broad
applicability. The suturing domains under consideration—needle handling,
needle driving, and needle withdrawal—are also generalizable across sur-
gical disciplines.

Our future work will involve delving into an end-to-end joint skill
assessment approach that encompasses feature extraction. Additionally, we
intend to explore a mechanism for a learnable structure, allowing for

adaptable relationships among sub-skills. By addressing these aspects, we
aim to enhance the versatility and robustness of joint skill assessment,
advancing its applicability in diverse surgical contexts. Our work considers
the virtual reality (VR) videos.VRvideosoffer a safe and repeatable platform
for a comprehensive study ina controlledand lifelike setting.Moreover, they
bear similarities to live videos in terms of the complex dynamics and rea-
sonable visual details. The insights of the proposed joint skill assessment
pipeline learned fromVRvideos offer promising avenues for advancements
in live surgical video analysis and training in the future.

Finally, it is essential tohighlight anopen-endedquestion regarding the
use of human ratings of suturing skills as the gold standard. While the
ultimate goal remains to improve patient outcomes, our past research found
that in the real world, there are many confounding factors for patient out-
comes, including the most apparently, patient features. These factors, often
beyond the control of surgeons, pose challenges in accurately attributing
outcomes solely to surgical technique. Indeed, distinguishing theproportion
of variability attributable to surgeon technique is a technically challenging
task. Looking ahead, we would like to conduct comprehensive studies to
unravel this complex interplay, aiming to elucidate the distinct contribu-
tions of surgical technique and patient characteristics toward achieving
optimal patient outcomes.

Methods
Ethics approval
All datasets used in this study were collected following rigorous
ethical standards under the approval of the Institutional Review
Board (IRB) of the University of Southern California, ensuring the
protection of participants’ rights and privacy. Written informed
consent was obtained from all individuals who participated in the
dataset collection (HS-17-00113). Furthermore, to safeguard the
privacy and confidentiality of the participants, the datasets were de-
identified prior to model development or analysis.

Description of surgical procedure and activities
This study focused on robot-assisted radical prostatectomy (RARP). This is
a surgical procedure utilized for the treatment of prostate cancer. The
essence of this surgical procedure lies in the meticulous execution of
sequential steps by the surgeon. Vesicoureteral anastomosis (VUA) is one
specific step of the RARP procedure. During the VUA step, a reconstructive
suturing process takes place, where the bladder and urethra, previously
separated by the removal of the prostate, are stitched together. This con-
nection is vital to facilitate the normal flow of urine postoperatively. The
suturing process in the VUA step involves three essential actions: needle
handling, wherein the surgeon grasps the needle with one of the robotic
arms; needle driving, which entails pushing the needle through the tissue;
and needlewithdrawal, wherein the needle is withdrawnon the other side of
the tissue in preparation for the subsequent stitch.

Surgical video samples and annotations
We utilize a previously validated suturing assessment tool (EASE9) to
evaluate the proposed joint skill assessment framework.

We collected a total of 156 virtual reality (VR) videos from43 residents,
fellows, and attending urologic surgeons in a 5-center multi-institutional
study. VR suturing exercises were completed on the Surgical Science™ Flex
VR simulator. Each videowas further divided into individual stitches, totally
3448 stitches. An illustrative visualization is shown in Fig. 6.Moreover, each
stitch was segmented into sub-phases, encompassing six binary assessment
labels for technical sub-skill (lowvs. high skill). Six independent and blinded
raters underwent standardized training,which involved 2-hourprerecorded
video sessions and 10 VR scoring practice exercises at the stitch level, uti-
lizing the EASE-VR scoring system. After training, they conducted assess-
ments of technical skills inVRexercises utilizingEASE. Inter-rater reliability
was quantified using the prevalence-adjusted bias-adjusted kappa (PABAK)
statistic. The evaluators attained a median PABAK of 0.74 (interquartile
range [IQR] 0.62–0.86), across six skill domains.

Table 6 | Summary of results

Sub-skill Independent Joint

w/o Attention w/o
Kinematics

Ours

Needle
Repositioning

0.72 ± 0.09 0.79 ± 0.06 0.74 ± 0.07 0.80 ± 0.03

Needle Hold Ratio 0.57 ± 0.04 0.60 ± 0.05 0.59 ± 0.04 0.60 ± 0.03

Needle Hold Angle 0.53 ± 0.05 0.54 ± 0.06 0.52 ± 0.06 0.59 ± 0.04

Needle Driving
Smoothness

0.87 ± 0.05 0.83 ± 0.07 0.88 ± 0.04 0.86 ± 0.04

Wrist Rotation 0.57 ± 0.05 0.62 ± 0.07 0.61 ± 0.07 0.64 ± 0.06

Wrist Rotation
Needle Withdrawal

0.64 ± 0.07 0.70 ± 0.04 0.66 ± 0.05 0.69 ± 0.04

MEAN 0.65 ± 0.02 0.68 ± 0.05 0.67 ± 0.02 0.70 ± 0.02

Boldfaced denotes best and ± are standard deviations across 5 held-out institutions (AUC).

https://doi.org/10.1038/s41746-024-01143-3 Article

npj Digital Medicine |           (2024) 7:152 7



For patient outcome, robotic-assisted radical prostatectomy cases of
participating surgeons from 5 institutions were included. All surgeons who
contributed VR suturing skill demonstration also contributed functional
recovery data for their patients after RARP. Patient data was obtained by
chart review, including age, BMI, PSA, and prostate volume. Follow-up data
at 3 months were obtained by chart review or telephone by an independent
research coordinator utilizing patient-reported outcomes. Urinary con-
tinence recovery is defined as 0 or 1 safety pad use per day.

Videos are segmented into sub-phases based on labeled timestamps.
Standard preprocessing techniques for video data, including channel nor-
malization and center cropping of the spatial dimensions to 224 × 224
pixels, were applied. Kinematic data has 70 features tracking 10 points of
interest, each pose contains 3 elements for coordinates and 4 elements for
quarternions. Particularly, 10 points of interest include two needles, left and
right pose, left and right target pose, insertion pose, and extraction pose. To
synchronize kinematics data, we extract frame ids fromeachclip andunitize
them to align kinematics frame-by-frame from raw sensor logs. For kine-
matics, all measurements are firstly centered by subtracting the camera
position and multiplying by the camera’s inversed orientation, then nor-
malized by the maximum distance from the origin.

Joint skill assessment framework
We propose a joint skill assessment framework which considers the prior
known relationships among sub-skills.

Our approach consists of two stages. For the first stage, we extract
features for each individual features using existing approaches. The
extracted features for each sub-skill will serve as inputs for the second stage.
The second stage performs graph convolution. After performing the graph
convolution, the second stage outputs the updated features for each node
(sub-skill). The final assessment is performed given the updated features for
each sub-skill. The input for a suturing sub-skill consisting of segmented
video clips and aligned kinematic sequences, and EASE technical sub-skill
score for non-ideal vs ideal performance.

Stage 1: In Stage 1, we consider the Convolutional Long Short-Term
Memory (ConvLSTM) as our baseline model for individual sub-skill
assessment. ConvLSTM is a specialized neural network architecture that
combines the strengths of convolutional neural networks (CNNs)24 and
Long Short-Term Memory (LSTM) cells25. ConvLSTM is widely used in
video understanding tasks, due to its ability to capture both spatial and
temporal information. Building on prior research, we not only consider the
visual appearance of videos but also incorporate the optical flow between
two consecutive frames to enhance the individual sub-skill assessment
process.

Stage 2: In Stage 2, we consider the Graph Attention (GAT) module26

for joint skill assessment.We represent each individual sub-skill as a node in
a graph. The association among nodes in the graph is determined based on
the prior known relationships between different sub-skills in the suturing

process. The extracted features from Stage 1 are firstly concatenated to the
aligned kinematic data for each sub-skill. The concatenated features serve as
input features for each node in GAT. GAT performs graph convolution.
Given the input features and the kinematic data for eachnode (i.e., sub-skill)
and the association among nodes, GAT updates the features of each node
(representing a sub-skill) by aggregating information from its neighboring
nodes. The association among nodes specifies which sub-skills are con-
sidered asneighbors andwill be used to collect relevant information for each
node’s update.

Different from other graph convolution approaches, an attention
mechanism is employed inGAT. It enablesGAT to automatically adjust the
edge weights and to focus on more informative and relevant neighbors
during the feature aggregation step. This attention mechanism assigns
different attention weights to the neighboring nodes, allowing the model to
emphasize the most relevant information and effectively capture the com-
plex dependencies among different sub-skills.

Encompassing data from five institutions, we adopt 5-fold cross-vali-
dation for training and evaluation. We iteratively train our model on data
from four institutions while evaluate its performance on the fifth held-out
institution.We repeat this processfive times to ensure that each institution’s
data is used for both training and testing. This cross-validation strategy not
only accounts for variations across individual surgeons but also allows us to
test themodel’s ability to generalize to unseen cases across multiple medical
centers.

During the training process, we implement a two-stage straining
strategy. In Stage 1, we train a baseline model for each sub-skill indepen-
dently. The primary objective is to optimize the performance of each
baseline model, and the training loss is computed using cross-entropy,
which measures the discrepancy between the predicted sub-skill assess-
ments and the ground truth labels for each sub-skill. Once Stage 1 training is
completed, we collect distinct features for each sub-skill from its respective
trained baselinemodel. In Stage 2, we train the joint skill assessmentmodel,
utilizing the collected features from Stage 1 and the aligned kinematic data.
The primary objective is to optimize joint skill assessment in an integrated
manner. The training loss is the summation of the cross-entropy, calculated
between the six predicted sub-skill assessments and the corresponding
ground truth sub-skill labels. The training of Stage 2 is independent of the
training conducted in Stage 1. This two-stage training strategy enables us to
refine the skill assessment by firstly focusing on individual sub-skill models
and then leverage the prior known relationships to perform a robust joint
skill assessment.

Skill assessment evaluation metric
In our evaluation process, we measure and report the mean ± standard
deviation (std. dev.) for the Area-under-the-ROC curve (AUC) metric
across the five test folds. AUC is awidely used performancemetric in binary
classification tasks. The ROC (Receiver Operating Characteristic) curve is a

Fig. 6 | A suturing video is firstly divided into
individual stitches. Each stitch is further segmented
into sub-phases, corresponding to six surgical sub-
skills.
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graphical representation that illustrates the trade-off between the true
positive rate (or sensitivity) and the false positive rate (or 1− specificity) at
various classification thresholds. TheAUCranges from0 to 1 andquantifies
the overall discriminatory power of the model. A higher AUC indicates
better classification performance. We use the AUC metric in our study to
evaluate the performance of our model in distinguishing between high-skill
and low-skill. By calculating the mean AUC, we obtain the average pre-
dictive capability of the model across different test folds. Additionally, the
std. dev. reflects the variability of AUC scores, indicating the robustness of
themodel’s performance on unseen samples fromdifferentmedical centers.

Implementation details
In Stage 1, we use the ConvLSTM, which uses a pre-trained AlexNet to
extract visual and flow features from the penultimate layer for each frame.
The features are then flattened as used as input vectors to the sequential
model ConvLSTM. The output feature dimension is 128. In Stage 2, we first
concatenate the feature from Stage 1 to the kinematic data sequence. For
each sub-skill, the sequence length is 24 and the kinematic data for each
frame has 70 features. In total, for each sub-skill (i.e., node), the input
dimension is 128+ 70 * 24 = 1808. The hidden dimension is 1024 and the
output dimension is 128. For attentionmechanism, the hiddendimension is
1024 with one layer. The learning rate is 1e−3 and the total number of
epoch is 50.

Association between suturing skills and clinical outcomes
The association between suturing skill domains and surgeons’ clinical
outcome (i.e., recovery of continence at 3 months,) was calculated by uni-
variable logistic regression. Then a multivariable logistic regression model
was created to adjust for patient features, comprising of age, BMI, PSA, and
prostate volume. All VR suturing skill domains were included in this
multivariable model as well. The predicted value for each patient in the
multivariable model was used to create receiver operating characteristic
(ROC) curve, and area-under-the-curve (AUC)was calculated. This process
was conducted for AI-generated and human-generated VR suturing skill
scores separately. AUCs were compared between AI and human.

Data availability
The datasets generated during and/or analyzed during the current study are
available from the corresponding author on reasonable request.

Code availability
The codes used in this study is available from the corresponding author
upon reasonable request.
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