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Abstract

Probabilistic inference can be tackled by min-
imizing a variational free energy through mes-
sage passing. To improve performance, neural
networks are adopted for message computa-
tion. Neural message learning is heuristic and
requires strong guidance to perform well. In
this work, we propose a theory-guided mes-
sage passing neural network (TMPNN) for
probabilistic inference. Inspired by existing
work, we consider a generalized Bethe free en-
ergy which allows for a learnable variational
assumption. Instead of using a black-box neu-
ral network for message computation, we uti-
lize a general message equation and introduce
a symbolic message function with semanti-
cally meaningful parameters. The analyti-
cally derived symbolic message function is
seamlessly integrated into the MPNN frame-
work, giving rise to the proposed TMPNN.
TMPNN is trained using algorithmic supervi-
sion without requiring exact inference results.
Leveraging the theory-guided symbolic func-
tion, TMPNN offers strengthened theoretical
guarantees compared to conventional heuristic
neural models. It presents a novel contribu-
tion by demonstrating its applicability to both
MAP and marginal inference tasks, outper-
forming SOTAs in both cases. Furthermore,
TMPNN provides improved generalizability
across various graph structures and enhanced
data efficiency.
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1 INTRODUCTION

Probabilistic inference includes maximum-a-posteriori
(MAP) inference and marginal inference. Given a joint
probability distribution of a set of random variables,
marginal inference is to infer the marginal probability
of an unobserved variable and MAP inference is to
infer the most probable configuration of a subset of
unobserved variables. A probabilistic graphical model
(PGM) is usually employed for a compact represen-
tation of joint distribution. Probabilistic inference is
then carried out by leveraging the structure of a PGM.
In this work, we focus on probabilistic inference in the
context of PGMs. Particularly, we consider pairwise
Markov random fields (MRFs).

For tackling approximate inference tasks, variational
approaches have gained broad acceptance. Variational
belief propagation (BP) solves for a variational distri-
bution by minimizing the Bethe free energy through
message passing (Yedidia et al., 2000, 2001, 2003). Its
inference performance thus is inherently limited by the
Bethe assumption which holds true only on loop free
graphs. Different algorithms are proposed to adapt the
Bethe assumption for addressing inference on loopy
graphs (Wainwright et al., 2003; Hazan and Shashua,
2010; Riegler et al., 2012). In these algorithms, message
equations are correspondingly derived, specific to the
pre-defined variational assumptions. Recently, message
passing neural networks (MPNNs) (Gilmer et al., 2017)
are explored for improving inference performance (Yoon
et al., 2019; Huynh, 2021). These models are still under
the Bethe assumption and black-box neural networks
are employed for computing messages in a heuristic
way. Exact inference results as strong supervision are
required for training. Differently, Cui et al. (2022) pro-
posed a V-MPNN for a learnable variational free energy
without being limited to a fixed variational assumption.
However, black-box neural networks are still required
for message computation in V-MPNN. Furthermore,
it is worth noting that all the aforementioned neural
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models focus on learning neural messages specifically
tailored for either the marginal or MAP inference task.

In this paper, we propose a theory-guided message pass-
ing neural network (TMPNN) for probabilistic inference.
Inspired by the existing work (Cui et al., 2022), we
consider a generalized Bethe free energy for a learnable
variational distribution that is not limited to a fixed
variational assumption. We utilize the general message
equation and introduce a symbolic message function
with semantically meaningful parameters, deviating
from the conventional approach of learning black-box
neural messages. We seamlessly integrate the analyti-
cally derived symbolic message function into the MPNN
framework, leading to the proposed TMPNN. TMPNN
is trained using algorithmic supervision without requir-
ing exact inference results. Our contributions lie in
three parts:

• We design a novel symbolic message function, fea-
turing semantically meaningful parameters. This
symbolic message function enables the incorpora-
tion of learnable variational assumptions and is
seamlessly integrated into the MPNN framework.

• TMPNN represents a notable advancement in the-
oretical guarantees over existing heuristic neural
models. Moreover, TMPNN excels in its ability to
handle both MAP inference and marginal inference
tasks.

• TMPNN surpasses state-of-the-art methods for
both inference tasks. Furthermore, TMPNN
demonstrates improved generalizability across var-
ious graph structures and exhibits superior data
efficiency compared to existing approaches.

2 RELATED WORKS

Belief propagation (BP) was introduced by (Pearl, 2014)
and various methods have been suggested to enhance
the performance of BP on loopy graphs (Koehler, 2019;
Knoll et al., 2018; Elidan et al., 2012; Knoll et al., 2015;
Aksenov et al., 2020; Murphy et al., 2013; Pretti, 2005).
Further theoretical insights are introduced whereby
the connection between BP and the Bethe free energy
is established (Yedidia et al., 2000, 2001, 2003). To
improve the performance of variational BP in loopy
graphs, some works consider generalizing the Bethe free
energy, such as the TRW-BP (Wainwright et al., 2003)
for marginal inference and the TRW-MP (Wainwright
et al., 2005) for MAP inference. These variational
BP algorithms require a pre-defined and fixed vari-
ational assumption. Correspondingly, their derived
message equations are specific to the pre-defined varia-
tional assumption. Other studies propose convexifying

the Bethe free energy by introducing a set of entropy
parameters (Meshi et al., 2012; Hazan and Shashua,
2010). The message equation is derived as a function
of the entropy parameters. In addition, the conver-
gence performance of message passing can be analyzed
by studying the variational free energy (Savchynskyy
et al., 2011, 2012; Hazan and Shashua, 2012; Weiss
et al., 2012; Meshi et al., 2015).

Recent works begin to exploit neural networks for
improved probabilistic inference performance. Node-
GNN (Yoon et al., 2019) directly adopted MPNN to per-
form probabilistic inference. The architecture and the
training objective of Node-GNN are tailored separately
for the distinct requirements of MAP and marginal in-
ference tasks. GNN-Mimic-BP (Huynh, 2021) improved
node-GNN by customizing neural network functions
based on the message equation from BP for marginal
inference. Satorras and Welling (2020) proposed to com-
bine the messages from BP with messages estimated
via neural networks, where neural messages serve as a
refinement of BP messages. These works employ neural
networks for message computation. Belief propagation
neural network (BPNN) (Kuck et al., 2020) was pro-
posed for improving the convergence performance on
loopy graphs. Besides using neural messages, a Bethe
free energy is approximated via a multi-layer percep-
tron and is used for regularization purposes. BPNN’s
theoretical guarantee is limited to convergence perfor-
mance. All the aforementioned works adhere to the
Bethe assumption in accordance with BP. Furthermore,
they require exact inference results for training.

Instead of being limited to a specific variational as-
sumption, Cui et al. (2022) proposed a V-MPNN for a
learnable variational distribution. V-MPNN is trained
by minimizing a neural-augmented free energy, without
requiring exact inference results. However, black-box
neural networks are required for message computation.
The training of V-MPNN can often converge to non-
optimal points due to the absence of strong guidance.
Besides, V-MPNN with neural messages can’t gener-
alize well to unseen structures and is only applied to
MAP inference. Compared to V-MPNN, TMPNN em-
ploys an analytically derived message function with
semantically meaningful parameters. TMPNN can bet-
ter generalize to unseen structures and is more data
efficient. Moreover, it can be applied to both MAP and
marginal inference tasks. In Appendix A, we provide
a comprehensive summary of the distinctions between
the aforementioned neural methods and TMPNN.

3 PROPOSED METHOD

Consider a set of random variables X =
{X1, X2, ..., XN} in discrete space χ = χ1×χ2×...×χN .
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|χi| = k is the number of possible states of each
variable Xi. N is the total number of variables. A
pairwise MRF G = (V, E) consists of a set of nodes V
with |V| = N and a set of edges E with |E| = M where
M is the total number of edges in the graph. MRF
captures the joint probability distribution of X as
p(X = x) ∝

∏
i∈V θi(xi)

∏
(i,j)∈E θij(xi, xj), where θi

and θij are potential functions. Given a graph G and its
probability parameters Θ = {θi, θij : i ∈ V, (i, j) ∈ E},
marginal inference infers the marginal probabil-
ity of a variable Xi, i.e., p(Xi). MAP infer-
ence infers the most probable configuration, i.e.,
x∗ = argmaxx∈χ p(X = x). For simplicity, we denote
p(X = x) as p(x). In the following, we first study the
general message equation and then propose TMPNN
whereby we introduce the symbolic message function
and integrate it into an MPNN.

3.1 General Message Equations

Generalized Bethe free energy. With a variational
approach, a variational distribution q(x) is obtained by
minimizing a variational free energy under a variational
assumption. Inference is then performed using q(x).
In pairwise MRF, it is commonly assumed that q(x) is
a function of unary marginals qnode = {qi(Xi)}i∈V and
pairwise marginals qedge = {qij(Xi, Xj)}(i,j)∈E , which
we refer to as the pairwise assumption. We term the
general form of the variational free energy under the
pairwise assumption as generalized Bethe free energy,
i.e.,

Fgeneral(q
node, qedge; C)

= U(qnode, qedge)− T H(qnode, qedge; C)
(1)

T is the temperature: T = 1 is for marginal infer-
ence and T → 0 is for MAP inference (Weiss et al.,
2012). U refers to the average energy. In pairwise MRF,
it is computed as U = −

∑
i∈V

∑
xi
qi(xi) ln θi(xi) −∑

(i,j)∈E
∑

xi,xj
qij(xi, xj) ln θij(xi, xj). H refers to en-

tropy and is calculated as a linear combination of H(qi)
and H(qij) with a set of entropy coefficients C = {ci,
cij}i∈V,(i,j)∈E , i.e.,

H(qnode, qedge; C) =
∑

i∈V ciH(qi) +
∑

(i,j)∈E cijH(qij) (2)

where H(qi) = −
∑

xi
qi(xi) ln qi(xi) and H(qij) =

−
∑

xi,xj
qij(xi, xj) ln qij(xi, xj). Different sets of coef-

ficients represent different variational assumptions. For
example, in BP, we have CBP = {ci = 1− |N (i)|; cij =
1}i∈V,(i,j)∈E where N (i) denotes a set of neighbor-
ing nodes of i-th node. Fgeneral(q

node, qedge; CBP) is
equivalent to the Bethe free energy. While CBP

ensures accurate inference on loop-free graphs, dif-
ferent sets of coefficients are introduced to handle
loopy graphs for accurate inference, e.g., edge appear-

ance probability based on spanning trees in TRW-
MP. The entropy is strictly concave if C ∈ Cconcave

where Cconcave = {∃ ĉij > 0, α̂ij ≥ 0 such that ci =
ĉi −

∑
j∈N (i) α̂ij , cij = ĉij + α̂ij + α̂ji} (Heskes, 2004;

Weiss et al., 2012; Cui et al., 2022).

General equations. An optimal variational distribu-
tion q∗ = {q∗i , q∗ij} is obtained by minimizing Fgeneral
subject to the local pairwise consistency constraint
{qi(xi) =

∑
xj

qij(xi, xj); ∀(i, j) ∈ E}1. This con-
strained optimization is solved through message passing
in variational BP algorithms. Traditional variational
BP algorithms compute messages specific to a pre-
defined variational assumption (Yedidia et al., 2001,
2003; Wainwright et al., 2003). Neural messages in (Cui
et al., 2022), though not specific to a pre-defined vari-
ational assumption, are computed heuristically with-
out theoretical guarantee. Instead, inspired by the
work from Meshi et al. (2012), we consider the gen-
eral message equation that is analytically derived from
Fgeneral. The derived equation is a function of entropy
coefficients C. Detailed derivations are shown in Ap-
pendix B.1. For MAP inference (T → 0), the message
from j-th node to i-th node, i.e., µ̂ji, is computed as

µ̂ji(xi) ∝

max
xj

θj(xj)
1/ĉjθij(xi, xj)

1/cij

∏
k∈N (j) µ̂

ckj/ĉj
kj (xj)

µ̂ij

(3)

where ĉi = ci +
∑

k∈N (i) cik. The belief equations for
qi and qij are computed as

qi(xi) ∝ θi(xi)
1/ĉi

∏
k∈N (i)

µ̂
cki/ĉi
ki (xi)

qij(xi, xj) ∝ θi(xi)
1/ĉiθj(xj)

1/c̃jθij(xi, xj)
1/cij×∏

k∈N (i) µ̂
cki/ĉi
ki (xi)

µ̂ji

∏
k∈N (j) µ̂

ckj/ĉj
kj (xj)

µ̂ij

(4)

For marginal inference, the message equation is closely
related to the equation for MAP inference under the
zero temperature lemma (Weiss et al., 2012). Specif-
ically, the message equation is obtained by replacing
the maximization operation in Eq. 3 with a summation
operation (derivations are in Appendix B.2). The be-
lief equation for marginal inference remains the same
as Eq. 4. Existing variational BP algorithms can be
treated as instantiations of the derived general equa-
tions with different configurations of C. We show
BP and TRW-MP as two examples in Appendix B.3.
Our equations share resemblance to those presented
in Meshi et al. (2012). However, it is important to
note that Meshi et al. (2012) exclusively focused on

1Both marginal and pairwise distributions are valid, each
satisfying the normalization constraint. We thus exclude
this constraint for simplicity.
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Figure 1: Overview of TMPNN which consists of two modules: the entropy coefficients estimation module and the
message passing update module. Solid lines denote forward calculation and dashed lines denote backward update.

marginal inference, while our work extends to MAP
inference with detailed derivations.

3.2 Theory-guided Message Passing Neural
Network

An overview of TMPNN is shown in Figure 1. We first
discuss the architecture in Sec. 3.2.1. The theoretical
guarantees of TMPNN are offered in Sec. 3.2.2, followed
by the training of TMPNN. We devote our discussion
primarily to the introduction of TMPNN for MAP
inference, while addressing its application in marginal
inference towards the end of this section.

3.2.1 Architecture

The architecture of TMPNN consists of two modules:
entropy coefficients estimation module and message
passing update module. Entropy coefficients estimation
module takes graph structure and probability parame-
ters as input and outputs estimated entropy coefficients.
Taking the estimated entropy coefficients as input, the
message passing update module outputs the estimated
unary and pairwise beliefs. The entropy coefficients
estimation module is trainable through which an opti-
mal family of variational distributions can be learned.
The message passing update module is based on the
derived general message equation whose parameters
are entropy coefficients.

Entropy coefficients estimation. Entropy coeffi-
cients C = {ci, cij : i ∈ V, (i, j) ∈ E} are estimated
based on the graph structure and probability param-
eters Θ. Unary entropy coefficients ci and pairwise
entropy coefficients cij are estimated through two sep-
arate neural networks. Specifically, an MLP is adopted
for the estimation of ci:

ci = Fnode(cat[θi, |N (i)|,
∑

j∈N (i)

θij ]; Φnode) (5)

where Φnode indicates free parameters in Fnode. In-
put features consist of unary potential θi, the number
of neighboring nodes |N (i)|, and the summation of
pairwise potentials over neighboring nodes

∑
j∈N (i) θij .

They are assembled via a concatenation operation cat.
For pairwise entropy coefficients estimation, a graph
attention layer (Veličković et al., 2017) is adopted and
cij is estimated as:

cij = Fedge(θi, θj , θij ; Φedge)

= exp(LeakyReLU(aT cat[Wθi,Wθj , θij ]))
(6)

where Φedge = {W,a} are unknown parameters in
Fedge. We impose the strictly positive constraint on
the estimation of cij by introducing exp to the output
layer of Fedge. In summary, Φ = {Φnode,Φedge} are
free parameters in TMPNN. They are employed for
modeling non-linear relationships between an input
graph and a distribution family. Unlike the neural-
augmented free energy in V-MPNN (Cui et al., 2022),
TMPNN embraces an explicit estimation of coefficients
using the entropy coefficients estimation module.

Message passing update. Given the estimated en-
tropy coefficients, TMPNN performs message passing
updates under an MPNN framework. MPNN is a recur-
rent network with nodes and a graph structure. Node
features are updated iteratively based on the features
of neighboring nodes, determined by the graph struc-
ture. The features are updated through a message
function M followed by a node update function U . Fi-
nally, a readout function R is employed to utilize the
features for predictions. Typically, these functions are
implemented using non-linear neural networks, such as
multi-layer perceptrons with ReLU activation.

To leverage the MPNN for probabilistic inference, we
map each node in MPNN to a variable in MRF with
hidden feature hi ∈ Rk. k is the number of possible
states of variable xi. Hidden feature hi is equivalent to
unary belief up to a scale factor zi in logarithmic space.
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Instead of using black-box neural message functions,
we define symbolic message function M based on the
derived general message equation (Eq. 3). At each
iteration t, each node receives a message from each of
its neighboring nodes as

mt+1
j→i(xi) = M(ht

j , z
t
j ,m

t+1
i→j)

= ln{max
xj

exp(
1

cij
ϕij(xi, xj) + ht

j + ztj −mt+1
i→j)}

(7)

mt+1
j→i is equivalent to the message µ̂ji in the logarithmic

space. ϕij = ln θij . The messages are aggregated as
mt+1

i = 1
ĉi

∑
k∈N (i) ckim

t+1
k→i. Hidden feature of each

node is updated with the aggregated message through
a customized node update function U as

ht+1
i (xi) = U(zt+1

i ,mt+1
i ) = −zt+1

i + 1
ĉi
ϕi(xi) +mt+1

i (xi) (8)

where ϕi = ln θi. Scale factor of each node is also up-
dated as zt+1

i = ln(
∑

xi
exp( 1

ĉi
ϕi(xi)+mt+1

i (xi))). The
update process is repeated until convergence. The esti-
mated unary and pairwise beliefs are obtained through
respective customized readout functions Rnode and
Redge as

qi = Rnode(hT
i ) = exp(hT

i )

qij(xi, xj) = Redge(hT
i ,h

T
j )

= exp(
1

cij
ϕij(xi, xj) + hT

i + hT
j −mT

i→j −mT
j→i)

(9)

T is the total number of iterations. Detailed derivations
are shown in Appendix C.

3.2.2 Theoretical Guarantees

Leveraging the theory-guided functions, TMPNN’s per-
formance is supported by stronger theoretical guaran-
tees through the following proposition compared to
existing neural models.

Proposition 1. Variational distribution q∗ from
TMPNN is locally optimal with pairwise consistency
constraint strictly satisfied. If the set of entropy coeffi-
cients satisfy C ∈ Cconcave, q∗ becomes globally optimal.
Through the proof, we can obtain that

∂Fgeneral

∂q∗i
= 0, ∀i ∈ V; ∂Fgeneral

∂q∗ij
= 0, ∀(i, j) ∈ E

subject to q∗i (xi) =
∑
xj

q∗ij(xi, xj)
(10)

It is worth noting that the pairwise consistency con-
straint must always be maintained as it constitutes a
fundamental cornerstone of pairwise MRF. However,
pairwise consistency constraint is not guaranteed to be
strictly satisfied in the existing neural models. Con-
sequently, their solutions rely on factors such as the
learning rate and the gradient descent algorithms. De-
tailed proofs are in Appx. D.

Furthermore, the MAP inference performance guaran-
tees from Cui et al. (2022) remain effective in TMPNN
as shown in following two propositions (proofs are in
Appx. D).

Proposition 2. Given a target probability dis-
tribution p, MAP inference error is defined as
∆map(q

∗
C , p) =

∑
i∈V

∑
xi
(pi(xi) − q∗C,i(xi)) ln θi(xi) +∑

(i,j)∈E
∑

xi,xj
(pij(xi, xj)− q∗C,ij(xi, xj)) ln θij(xi, xj)

where pi(xi) =
∑

x\xi
p(x) and pij(xi, xj) =∑

x\(xi∪xj)
p(x). With an optimal configuration of en-

tropy coefficients C∗ ∈ Cconcave, the MAP inference er-
ror of TMPNN is upper bounded by an entropy approx-
imation scaled by ϵ, i.e., ∆map(q

∗
C∗ , p) ≤ ϵH(q∗

C∗ ; C∗).
An optimal configuration of entropy coefficients is ob-
tained as C∗ = argminC∈Cconcave H(q∗

C ; C).

Recall that in generalized Bethe free energy (Eq. 1),
temperature T → 0 stands for MAP inference. In
Proposition 2, we symbolically denote T → 0 using a
sufficiently small constant value ϵ for proof.

Proposition 3. TMPNN subsumes existing varia-
tional BP algorithms (e.g., BP and TRW-MP) as a
strict generalization by incorporating entropy coeffi-
cients. TMPNN tends to achieve superior or at least
comparable inference performance against existing vari-
ational BPs.

The proof of Proposition 3 is independent of the opti-
mization approach but considers the optimal scenario
where TMPNN finds the optimal configuration of en-
tropy coefficients C∗.

3.2.3 Training Objective

The training objective for updating Φ is defined based
on the generalized Bethe free energy. Particularly,
given a current entropy coefficients estimation C(Φ)
together with the estimated beliefs, we obtain an en-
tropy approximation H(qnode, qedge; C(Φ)). Based on
the proposition 2, we set H(qnode, qedge; C(Φ)) as our
main loss function and Φ is thus updated toward the
direction of minimizing the inference error bound. We
don’t use ϵ during training since ϵ is a constant. An
additional regularization term is defined based on the
mean squared error between estimated C(Φ) and CBP.
This term is to avoid unreasonable estimation of C that
can cause numerical instability. In the end, the training
loss is defined as

L = H(qnode, qedge; C(Φ)) + λ||C(Φ)− CBP||22 (11)

λ is an importance weight of the regularization term.
After training, optimal parameters Φ∗ are used for
MAP inference and MAP configuration is obtained as
x̂i = argmaxxi∈χi

qi(xi; Φ
∗).

It is worth noting that, in Proposition 2, we de-
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𝐒𝟏 𝐒𝟐 𝐒𝟑 𝐒𝟒 𝐒𝟓 𝐒𝟔 𝐒𝟕 𝐒𝟖 𝐒𝟗 𝐒𝟏𝟎 𝐒𝟏𝟏 𝐒𝟏𝟐 𝐒𝟏𝟑

Figure 2: 13 Benchmark Graphs With 9 Nodes (Left to Right): Star♣ (S1); Tree♣ (S2); Path♣ (S3); Circle
(S4); Ladder (S5); Grid (S6); Circular ladder (S7); Barbell (S8); Lollipop (S9); Wheel (S10); Bipartite
(S11); Tripartite (S12); Complete (S13). The top row visualizes the structure, and the bottom row shows the
adjacency matrix. ♣ marks loop-free graphs.

rive ∆map(q
∗
C , p) ≤ ϵ(H(q∗

C ; C)−H(pnode,pedge; C)) ≤
ϵH(q∗

C; C). Theoretically, to achieve equality (tight
bound), the first inequality requires q∗

C equals to the
target distribution p while the second inequality re-
quires H(pnode,pedge; C) = 0. The tightness of the
second bound does not influence the training process
since H(pnode,pedge; C) is a constant. Empirically, we
report the gap (ϵH(q∗

C) −∆map(q
∗
C , p)) in Appx. E.1.

As shown, on loop free graphs, the upper bound is
tight. On loopy graphs, the gap increases as the graph
complexity increases, and is positively correlated to the
inference error.

3.3 TMPNN for Marginal Inference

The TMPNN can straightforwardly be applied to
marginal inference. The message function M
(Eq. 7) is changed by replacing the maximization
by a summation as mt+1

j→i(xi) = M(ht
j , z

t
j ,m

t+1
i→j) =

ln{
∑

xj
exp( 1

cij
ϕij(xi, xj) + ht

j + ztj − mt+1
i→j)}. The

rest part of the architecture remains the same. For
training, the loss function (Eq. 11) remains effective as
demonstrated through experiments. After training, the
marginal probability for xi is estimated as qi(xi; Φ

∗).

4 EXPERIMENTS

Datasets. Thirteen benchmark graphs are considered
for evaluation following (Yoon et al., 2019; Huynh, 2021;
Cui et al., 2022). These graphs consist of three loop-
free graphs (Star, Tree and Path) and ten loopy
graphs, as visualized in Figure 2. For clarification,
we mark loop-free graphs with ♣. These graphs de-
fine the structures of MRFs. To generate probability
parameters, following Wainwright et al. (2005), we
assume θi(xi) = bixi and θij(xi, xj) = Jijxixj with
xi = {−1, 1}. Pairwise parameter Jij is sampled from
a uniform distribution as Jij ∼ U [−1, 1]. We consider
the pairwise coupling with the strength ranging from
-1 to +1, which represents a general graph that has
traditionally posed challenges for BP methods (Knoll
et al., 2018). Unary parameter bi is sampled from a

uniform distribution as bi ∼ U [−0.05, 0.05]. For each
type of graph, we simulate 1000 graphs for training
and 100 graphs for testing. Exact inference results
are computed by enumeration. Since enumeration is a
computationally expensive process, we limit the sizes
of graphs to 9 and 16 nodes for evaluation.

Experiment settings. In Eq. 5, Fnode employs a
three-layer MLP with hidden dimension being 256. In
Eq. 6, W ∈ Rk×d with k = 2 and d = 256. a is a
weight vector with dimension 2d+ 1 and d = 256. In
Eq. 11, λ = 0.001. ADAM optimizer is employed with
a learning rate of 1e − 5. Messages are initialized to
ones. For better training convergence, TMPNN is pre-
trained on loop-free graphs (Star, Tree, Path) using
inference results from BP as supervision. The detailed
settings and the effectiveness of the pre-training are
studied in Appendix E.2. The effects from message
initialization are examined in Appendix E.3. Experi-
ments are performed on a laptop with an i9 processor
and CPU only.

Evaluation metrics. For MAP inference, given
an exact MAP configuration x∗ = {x∗

1, ..., x
∗
N} and

an estimated one x̂ = {x̂1, ..., x̂N}, the accuracy is
#(x∗

i =x̂i)
N (Yoon et al., 2019; Cui et al., 2022). For

marginal inference, we use the negative log KL diver-
gence with base 10 (i.e., − log10DKL) between the esti-
mated marginal probability and the exact one (Huynh,
2021)2. For both metrics, a higher value is preferable.

4.1 Comparison to SOTA Methods

We first compare the inference performance of TMPNN
against SOTA methods for both MAP inference and
marginal inference. We consider both the training-
free methods and the training-based methods for com-
parison. The training-free methods refer to the opti-
mization algorithms that don’t require training. The
training-based methods refer to the neural models that
require training. When comparing to training-based

2For exact inference, KL divergence is zero leading to
an invalid value. Instead, 1e− 10 is used.
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Table 1: Comparison to SOTA Training-free Methods for MAP Inference (Accuracy; loop-free♣)

Graph N=9 N=16
BP TRW-MP MPLP TMPNN BP TRW-MP MPLP TMPNN

star (S1)♣ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
tree (S2)♣ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
path (S3)♣ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
cycle (S4) .92 .81 .89 .90 .89 .88 .82 .92
ladder (S5) .63 .58 .79 .78 .60 .47 .70 .76
grid (S6) .63 .55 .77 .79 .58 .50 .65 .69

circular ladder (S7) .84 .85 .89 .90 .68 .51 .69 .73
barbell (S8) .59 .52 .65 .75 .58 .49 .63 .70
lollipop (S9) .78 .84 .83 .88 .60 .54 .63 .68
wheel (S10) .56 .46 .61 .73 .59 .42 .63 .71

bipartite (S11) .62 .47 .64 .77 .61 .50 .51 .73
tripartite (S12) .54 .50 .54 .67 .60 .49 .54 .64
complete (S13) .43 .52 .50 .63 .49 .50 .51 .62

Average .73 .70 .78 .83 .71 .64 .72 .78

methods, we present the average accuracy and stan-
dard deviation derived from 10 separate training runs
with neural model parameters initialized randomly. We
limit our comparisons to algorithms that also follow a
message passing scheme. In addition, we also achieve
competitive performance compared to sampling-based
methods (detailed comparisons are in Appendix E.4).

4.1.1 MAP Inference

Training-free methods. We consider three training-
free methods: BP (Murphy et al., 2013), TRW-
MP (Wainwright et al., 2005) and max product linear
programming (MPLP) (Globerson and Jaakkola, 2007)
for comparison. We use the typical stopping criteria
and break the algorithm if the number of iterations
is larger than 200 or the average difference between
unary beliefs from two consecutive iterations is suffi-
ciently small, i.e., 1

N

∑N
i=1 ||q

t+1
i − qti ||22 < 1e − 7. In

BP, we apply the default damping parameter 0.5. In
TRW-MP (Wainwright et al., 2005), message damping
is applied with damping parameter being 0.5, and edge
appearance probability is set as ρij =

|V|−1
|E| .

As shown in Table 1, TMPNN achieves the best average
performance over graphs of different structures for both
N=9 and N=16. In loopy graphs, by leveraging a
learnable variational distribution without being limited
to a fixed variational assumption, TMPNN significantly
outperforms other methods, particularly in larger and
more complex graphs. In total, TMPNN outperforms in
8 out of 10 cases for N=9 and in all 10 cases for N=16.
For example, in Bipartite with 9 nodes, TMPNN
achieves 77% accuracy, which is 30% better than TRW-
MP.

Training-based methods. We consider the fully-

supervised method node-GNN (Yoon et al., 2019)3 and
the weakly-supervised method V-MPNN (Cui et al.,
2022) for comparison. Following the original settings,
V-MPNN is pre-trained. Node-GNN is trained us-
ing exact inference results without pre-training. Sug-
gested hyper-parameters are used. As shown in Ta-
ble 2, TMPNN achieves better average performance
than V-MPNN, both of which do not require GT MAP
configurations. By leveraging the analytically derived
functions, TMPNN performs exact inference on loop-
free graphs and outperforms V-MPNN on different
structures. For example, on complete (S13) with 16
nodes, TMPNN is 5% better than V-MPNN. Further-
more, without using exact inference results, TMPNN
even outperforms the fully-supervised method Node-
GNN on average. Though Node-GNN performs well
on larger graphs, it is heuristic and is limited by the
graph complexity since the exact inference results are
not obtainable on more complex graphs.

For better readability of Table 1 and Table 2, we visu-
alize the values in Appendix E.5. We further examine
the pre-training of Node-GNN using loop free graphs.
Our results show that pre-training of Node-GNN helps
improve average accuracy by 0.09 on loop-free graphs,
but experiences a decrease on loopy graphs (e.g., 0.03 ↓
on the complete graph). Conclusions in comparison to
TMPNN remain same.

4.1.2 Marginal Inference

Training-free methods. We consider two training-
free methods: BP (Murphy et al., 2013) and TRW-
BP (Wainwright et al., 2005) for comparison. Algo-
rithm settings remain the same as we used for MAP
inference evaluation. Due to space constraints, we

3https://github.com/ks-korovina/pgm_graph_inference.
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Table 2: Comparison to SOTA Training-based Method for MAP Inference (Accuracy; loop-free♣)

Graph
N=9 N=16

Full supervision Weak Supervision Full supervision Weak Supervision
Node-GNN V-MPNN TMPNN Node-GNN V-MPNN TMPNN

star (S1)♣ .88±.06 .93±.02 1.00±.00 .74±.06 .71±.04 1.00±.00
tree (S2)♣ .84±.02 .96±.02 1.00±.00 .83±.01 .92±.00 1.00±.00
path (S3)♣ .78±.01 .97±.00 1.00±.00 .78±.01 .92±.04 1.00±.00
cycle (S4) .85±.01 .85±.01 .90±.00 .78±.01 .86±.03 .92±.01
ladder (S5) .75±.01 .77±.02 .78±.01 .72±.01 .72±.02 .76±.03
2D grid (S6) .81±.00 .74±.03 .79±.01 .74±.01 .69±.03 .69±.00

circular ladder (S7) .80±.01 .83±.05 .90±.05 .76±.01 .74±.05 .73±.00
barbell (S8) .76±.01 .71±.03 .75±.02 .73±.00 .69±.03 .70±.00
lollipop (S9) .79±.00 .88±.02 .88±.00 .69±.01 .67±.01 .68±.00
wheel (S10) .77±.02 .70±.04 .73±.01 .71±.02 .66±.04 .71±.01

bipartite (S11) .83±.01 .74±.06 .77±.02 .79±.00 .65±.03 .73±.04
tripartite (S12) .75±.01 .68±.03 .67±.00 .74±.01 .60±.01 .64±.00
complete (S13) .77±.01 .65±.04 .63±.00 .71±.01 .57±.01 .62±.00

Average .80±.01 .80±.03 .83±.01 .75±.01 .72±.03 .78±.01

present the average performance across 13 structures.
Detailed results for individual structures are in Ap-
pendix E.6. As shown in Table 3 and the appendix,
TMPNN achieves better average performance for both
sizes and it performs significantly better than SOTA
training-free methods on loopy graphs. Specifically,
TMPNN demonstrates the best performance in 10 out
of 10 types of loopy graphs for N=9, and in 6 out of
10 types for N=16. On Complete(S13), TMPNN
achieves 3.21, outperforming BP (achieves 0.60) by
about two orders of magnitude on graphs of size 16
(the measure is in logarithmic scale).

Table 3: Comparison to SOTA Training-free Methods
for Marginal Inference (− log10DKL)

N=9 N=16
BP TRW-BP TMPNN BP TRW-BP TMPNN

Ave. 6.23 5.89 6.66 5.24 5.04 5.70

Training-based methods. We consider two fully-
supervised training-based methods: node-GNN (Yoon
et al., 2019) and GNN-Mimic-BP (Huynh, 2021) for
comparisons. For GNN-Mimic-BP, without access to
source codes, we only compare to its reported per-
formance on loop-free graphs (marked with ∗). Both
BPNN (Kuck et al., 2020) and NEBP (Satorras and
Welling, 2020) focus on factor graphs. Due to the lack
of access to their source codes and datasets, we exclude
them from comparison. V-MPNN is only for MAP
inference and thus is excluded. We present the average
performance in Table 4 and the detailed results are in
Appendix E.6. As shown in Table 4 and the appendix,
TMPNN again achieves better average performance,
particularly on loop-free graphs. For example, TMPNN
outperforms node-GNN and GNN-Mimic-BP by about

four orders of magnitude on Star and Tree with 9
nodes, without requiring exact inference results.

In addition, we evaluate the efficiency of TMPNN
against SOTA methods. Detailed experiment settings
and results are in Appendix E.7. As shown, TMPNN
is computationally efficient compared to training-free
baselines. For example, on graphs with 16 nodes,
TMPNN on average takes 0.0288s for one testing graph,
while TRW-BP needs 0.2649s, which is around 10 times
longer than TMPNN. On the other hand, TMPNN’s
efficiency does not surpass that of neural-based models,
due to the utilization of analytical message functions.
Similar to conventional variational BPs with analyt-
ically derived message functions, the computational
complexity of TMPNN increases with graph complex-
ity. While neural messages’ complexity only depends
on the neural network architecture and doesn’t change
w.r.t. graph complexity. This finding reflects a typi-
cal trade-off between accuracy and efficiency, and our
primary goal does not prioritize enhancing efficiency.

4.2 Ablation Studies

To further study the effectiveness of the theory-guided
message function over neural messages, we perform
ablation studies to evaluate the generalization ability
and the data efficiency of TMPNN against V-MPNN.
We consider MAP inference on graphs with 9 nodes.

Generalization. We perform a cross-graph evalua-
tion to study the generalization ability from loop-free
graphs to loopy graphs. Experiment settings and de-
tailed results on each individual structure are shown in
Appendix E.8. We here report the average performance
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Table 4: Comparison to SOTA Training-based Methods for Marginal Inference (− log10DKL)

Graph N=9 N=16
Full Supervision Weak Supervision Full Supervision Weak Supervision

Node-GNN GNN-Mimic-BP TMPNN Node-GNN GNN-Mimic-BP TMPNN
Average 5.51±0.14 5.82∗ 6.66±0.03 5.12±0.13 4.91∗ 5.70±0.04

across graphs. As shown in Table 5, TMPNN has bet-
ter generalization ability over V-MPNN by leveraging
its analytically derived equations.

Table 5: Generalization Evaluation

Method V-MPNN TMPNN
Average .73 .77

Data Efficiency. We study the data efficiency of
TMPNN by using only 20% of the training data. We
report the average MAP inference accuracy in Table 6
and detailed results on each individual structure are
shown in Appendix E.9. As shown, given only 20%
training data, TMPNN outperforms V-MPNN by 15%,
demonstrating that TMPNN is less data dependent by
leveraging the analytical equations.

Table 6: Data Efficiency Evaluation

Training Data V-MPNN TMPNN
100% .80 .83
20% .58 .73

4.3 Discussions on Larger Graphs

Systematically evaluating TMPNN on large graphs
presents a considerable challenge due to the absence
of exact inference results. Alternatively, we show the
utility of TMPNN on larger graphs through a node
classification task. We consider both real-world graphs
(i.e., PolBlog (Adamic and Glance, 2005), EuE-
mail (Leskovec et al., 2007), and CORA (Šubelj and
Bajec, 2013)), and synthetic graphs. Detailed settings
and results are in Appendix E.10. As shown, TMPNN
can apply to large graphs and achieve decent infer-
ence performance in terms of both accuracy and effi-
ciency. On CORA, TMPNN achieves 27% accuracy
improvement compared to V-MPNN. For efficiency, on
PolBlog, the computing time of TMPNN is 14.78s,
around 2× faster than TRW-MP which takes 35.34s.
Nonetheless, it remains a challenging problem to sys-
tematically evaluate TMPNN’s performance enhance-
ment as the graph size and complexity increase. We
intend to study this issue as part of our future work.

5 CONCLUSIONS
In this work, we proposed a theory-guided message
passing neural network (TMPNN) for probabilistic in-
ference. TMPNN is designed based on the derived gen-
eral message and belief equations. Training of TMPNN
is guided by the generalized Bethe free energy and
doesn’t require exact inference results. Theoretical
performance guarantees are provided. We empirically
demonstrate the effectiveness of TMPNN by comparing
it against SOTA methods for both MAP inference and
marginal inference. Ablation studies further show that
TMPNN can generalize across graphs with different
structures and has better data efficiency. The pro-
posed TMPNN relies on the pairwise assumption, which
could be a potential limitation. Extending TMPNN
to cluster-based message passing with Kikuchi assump-
tion is our future work. Another limitation arises from
the computational complexity due to the utilization
of the derived symbolic message function. To further
improve the efficiency, our further work includes inves-
tigating existing accelerated variational BP algorithms
that target mitigating the intrinsic limitation due to
the utilization of analytical message functions.
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A Comparison to Existing Neural Methods

Given the discussions we provide in the main body of the paper, we provide a comprehensive summary of the
distinctions between the aforementioned neural methods and TMPNN in Table 7. We discuss variations in
message computation, training objectives, the specific inference tasks they address, and the level of guarantee
they offer in terms of inference accuracy. Particularly, for message computation, we consider if the model utilizes
classical calculation of messages following variational BP algorithms or the model directly uses black-box neural
networks for message computation. For training loss, we consider if the model requires exact inference results as
labels to perform fully-supervised training and if the model relies on the variational free energy as a primary
week supervision or a regularization term.

Table 7: Comparison to SOTA Training-based Methods

Message Computation Training Loss Inference Accuracy
classical neural labels variational Tasks Theoretical

calculation network free energy Guarantee
Node-GNN no yes yes no both* no

GNN-Mimic-BP no yes yes no marginal no
NEBP BP equations yes yes no marginal no
BPNN BP equations yes yes Bethe marginal no*

V-MPNN BP equations yes no neural-augmented MAP yes

TMPNN (Ours) general no no generalized Bethe both yesequations

In particular, Node-GNN directly adopted MPNN to perform probabilistic inference. The architecture and the
training objective of Node-GNN are tailored separately for the distinct requirements of MAP and marginal
inference tasks. GNN-Mimic-BP improved node-GNN by customizing neural network functions based on the
message equation from BP for marginal inference. NEBP proposed to combine the messages from BP with
messages estimated via neural networks, where neural messages serve as a refinement of BP messages. These
works employ neural networks for message computation. Belief propagation neural network (BPNN) was proposed
for improving the convergence performance on loopy graphs. Besides using neural messages, a Bethe free energy is
approximated via a multi-layer perceptron and is used for regularization purposes. BPNN’s theoretical guarantee is
limited to convergence performance. All the aforementioned works adhere to the Bethe assumption in accordance
with BP. Furthermore, they require exact inference results for training. Instead of being limited to a specific
variational assumption, V-MPNN proposed a V-MPNN for a learnable variational distribution. V-MPNN is
trained by minimizing a neural-augmented free energy, without requiring exact inference results.

Compared to V-MPNN, TMPNN employs an analytically derived message function with semantically meaningful
parameters. TMPNN can better generalize to unseen structures and is more data efficient. Moreover, it can be
applied to both MAP and marginal inference tasks.

B Message Passing with the Generalized Bethe Free Energy

B.1 Derivation for general belief and message equations

We derive the belief and message update equations based on the generalized Bethe free energy. We first convert the
constrained optimization into an unconstrained optimization by absorbing constraints via Lagrangian multipliers
µij , and we obtain

Lgeneral = U(qnode, qedge)− T H(qnode, qedge) +
∑

(i,j))∈E

∑
xi

µji(xi)(
∑
xj

qij(xi, xj)− qi(xi)) (12)
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Given the fact that beliefs are local optimal solutions, beliefs are corresponding to zero-gradient points, i.e.,

∂Lgeneral

∂qi(xi)
= − ln(θi(xi))− T ∂H

∂qi(xi)
−

∑
j∈N (i)

µji(xi) = 0

∂Lgeneral

∂qij(xi, xj)
= − ln(θij(xi, xj))− T ∂H

∂qij(xi, xj)
+ µji(xi) + µij(xj) = 0

(13)

Given the total entropy approximation H(qnode, qedge; C), we first re-organize the entropy in the generalized
Bethe free energy as follows:

H(qij , qi) =
∑
i∈V

ciH(qi) +
∑

(i,j)∈E

cijH(qi, qj)

= −
∑
i∈V

ci
∑
xi

qi(xi) ln qi(xi)−
∑

(i,j)∈E

cij
∑
xi,xj

qij(xi, xj) ln qij(xi, xj)

= −
∑
i∈V

(ci +
∑

k∈N (i)

cik)
∑
xi

qi(xi) ln qi(xi)−
∑

(i,j)∈E

cij
∑
xi,xj

qij(xi, xj) ln
qij(xi, xj)

qi(xi)qj(xj)

(14)

Given the entropy, we obtain the derivative ∂H
∂qi(xi)

as

∂H

∂qi(xi)
= −(ci +

∑
k∈N (i)

cik)(ln(qi(xi)) + 1) +
∑

k∈N (i)

cik

= −(ci +
∑

k∈N (i)

cik) ln(qi(xi))− ci

(15)

Similarly, the derivative ∂H
∂qij(xi,xj)

is calculated as

∂H

∂qij(xi, xj)
= −cij ln(qij(xi, xj))− cij + cij ln(qi(xi)) + cji ln(qj(xj)) (16)

Given the entropy derivatives Eq. 15 and Eq. 16, we plug them into Eq. 13 and obtain two equality equations
based on zero-gradients as

− ln(θi(xi)) + T {(ci +
∑

k∈N (i)

cik) ln(qi(xi)) + ci} −
∑

k∈N (i)

µki(xi) = 0

− ln(θij(xi, xj)) + T {cij ln(qij(xi, xj)) + cij − cij ln(qi(xi))− cji ln(qj(xj))}+ µji(xi) + µij(xj) = 0

(17)

Setting µki(xi) = cki ln(µ̂ki(xi)) and solving above two equations, we obtain the update equation for unary belief
and pairwise belief. Particularly, we first show the derivation to obtain the unary belief qi:

− ln(θi(xi)) + T {(ci +
∑

k∈N (i)

cik) ln(qi(xi)) + ci} −
∑

k∈N (i)

µki(xi) = 0

⇒ T {ĉi ln(qi(xi)) + ci} = ln(θi(xi)) +
∑

k∈N (i)

µki(xi)

⇒ T ln(qi(xi)) =
1

ĉi
ln(θi(xi)) +

1

ĉi

∑
k∈N (i)

µki(xi)− T ci
ĉi

⇒ T ln(qi(xi)) =
1

ĉi
ln(θi(xi)) +

1

ĉi

∑
k∈N (i)

cki ln(µ̂ki(xi))− T ci
ĉi

⇒ qTi (xi) = θi(xi)
1/ĉi

∏
k∈N (i)

µ̂
cki/ĉi
ki (xi) exp(−T ci

ĉi
)

⇒ qTi (xi) ∝ θi(xi)
1/ĉi

∏
k∈N (i)

µ̂
cki/ĉi
ki (xi)

(18)



Theory-guided Message Passing Neural Network for Probabilistic Inference

where ĉi = ci +
∑

k∈N (i) cik. The last step is based on the fact that exp(−T ci
ĉi
) is constant with respect to

different xi. Similarly, we derive the update equation for pairwise belief qij as

− ln(θij(xi, xj)) + T {cij ln(qij(xi, xj)) + cij − cij ln(qi(xi))− cji ln(qj(xj))}+ µji(xi) + µij(xj) = 0

⇒ T {ln(qij(xi, xj)) + 1− ln(qi(xi))− ln(qj(xj))} =
1

cij
ln(θij(xi, xj))−

1

cij
µji(xi)−

1

cij
µij(xj)

⇒ T ln(qij(xi, xj)) =
1

cij
ln(θij(xi, xj))−

1

cij
µji(xi)−

1

cij
µij(xj) + T ln(qi(xi)) + T ln(qj(xj))− T

(19)

where we assume cij = cji. Plug the equation for T ln(qi(xi)) as derived in Eq. 18 and we have

T ln(qij(xi, xj))

=
1

cij
ln(θij(xi, xj))−

1

cij
µji(xi)−

1

cij
µij(xj)

+
1

ĉi
ln(θi(xi)) +

1

ĉi

∑
k∈N (i)

µki(xi)− T ci
ĉi

+
1

ĉj
ln(θj(xj)) +

1

ĉj

∑
k∈N (j)

µkj(xj)− T cj
ĉj

− T

=
1

cij
ln(θij(xi, xj))− ln(µ̂ji(xi))− ln(µ̂ij(xj))

+
1

ĉi
ln(θi(xi)) +

1

ĉi

∑
k∈N (i)

cki ln(µ̂ki(xi)) +
1

ĉj
ln(θj(xj)) +

1

ĉj

∑
k∈N (j)

ckj ln(µ̂kj(xj))

− T ci
ĉi

− T cj
ĉj

− T

(20)

where ĉi = ci +
∑

k∈N (i) cik and ĉj = cj +
∑

k∈N (j) cjk. Since −T ci
ĉi

− T cj
ĉj

− T is a constant with respect to
different xi, we in the end have

qTij(xi, xj) ∝ θi(xi)
1/ĉiθj(xj)

1/c̃jθij(xi, xj)
1/cij

∏
k∈N (i) µ̂

cki/ĉi
ki (xi)

µ̂ji

∏
k∈N (j) µ̂

ckj/ĉj
kj (xj)

µ̂ij
(21)

In summary, we obtain the update equations for unary belief and pairwise belief as

qTi (xi) ∝ θi(xi)
1/ĉi

∏
k∈N (i)

µ̂
cki/ĉi
ki (xi)

qTij(xi, xj) ∝ θi(xi)
1/ĉiθj(xj)

1/c̃jθij(xi, xj)
1/cij

∏
k∈N (i) µ̂

cki/ĉi
ki (xi)

µ̂ji

∏
k∈N (j) µ̂

ckj/ĉj
kj (xj)

µ̂ij

(22)

With the derived belief update equations, we can then derive message update equation. Given the local consistency
constraint (i.e.,qi(xi) =

∑
xj

qij(xi, xj)), we first have

qTi (xi) = {
∑
xj

qij(xi, xj)}T (23)

Plug the derived belief update equations in Eq. 22 into the above equation, we have

θi(xi)
1/ĉi

∏
k∈N (i)

µ̂
cki/ĉi
ki (xi)

∝ {
∑
xj

[θi(xi)
1/ĉiθj(xj)

1/c̃jθij(xi, xj)
1/cij

∏
k∈N (i) µ̂

cki/ĉi
ki (xi)

µ̂ji

∏
k∈N (j) µ̂

ckj/ĉj
kj (xj)

µ̂ij
]1/T }T

∝ {[θi(xi)
1/ĉi

∏
k∈N (i) µ̂

cki/ĉi
ki (xi)

µ̂ji
]1/T

∑
xj

[θj(xj)
1/c̃jθij(xi, xj)

1/cij

∏
k∈N (j) µ̂

ckj/ĉj
kj (xj)

µ̂ij
]1/T }T

∝ θi(xi)
1/ĉi

∏
k∈N (i) µ̂

cki/ĉi
ki (xi)

µ̂ji
{
∑
xj

[θj(xj)
1/c̃jθij(xi, xj)

1/cij

∏
k∈N (j) µ̂

ckj/ĉj
kj (xj)

µ̂ij
]1/T }T

(24)
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Cancel the common terms θi(xi)
1/ĉi

∏
k∈N (i) µ̂

cki/ĉi
ki (xi) on both sides of the equation and through a re-organization,

we obtain the message update equation as

µ̂ji(xi) ∝ {
∑
xj

[θj(xj)
1/ĉjθij(xi, xj)

1/cij

∏
k∈N (j) µ̂

ckj/ĉj
kj (xj)

µ̂ij
]1/T }T (25)

In the end, we obtain the belief and message update equations of general form given the general free energy.

B.2 Probabilistic inference with derived general equations

B.2.1 Marginal inference

To perform marginal inference, we set T = 1. The message update equation now becomes

µ̂ji(xi) =
∑
xj

θj(xj)
1/ĉjθij(xi, xj)

1/cij

∏
k∈N (j) µ̂

ckj/ĉj
kj (xj)

µ̂ij
(26)

And we obtain the belief update equations as

qi(xi) ∝ θi(xi)
1/ĉi

∏
k∈N (i)

µ̂
cki/ĉi
ki (xi)

qij(xi, xj) ∝ θi(xi)
1/ĉiθj(xj)

1/c̃jθij(xi, xj)
1/cij

∏
k∈N (i) µ̂

cki/ĉi
ki (xi)

µ̂ji

∏
k∈N (j) µ̂

ckj/ĉj
kj (xj)

µ̂ij

(27)

The estimated beliefs correspond to marginal probabilities.

B.2.2 MAP inference

To perform MAP inference, we consider the zero temperature limit and the message function becomes

µ̂ji(xi) = lim
T →0

{
∑
xj

[θj(xj)
1/ĉjθij(xi, xj)

1/cij

∏
k∈N (j) µ̂

ckj/ĉj
kj (xj)

µ̂ij
]1/T }T

= |θj(xj)
1/ĉjθij(xi, xj)

1/cij

∏
k∈N (j) µ̂

ckj/ĉj
kj (xj)

µ̂ij
|∞

= max
xj

θj(xj)
1/ĉjθij(xi, xj)

1/cij

∏
k∈N (j) µ̂

ckj/ĉj
kj (xj)

µ̂ij

(28)

where | · |∞ indicates the infinity norm. To show the belief equation, we first introduce a zero temperature
lemma (Weiss et al., 2012):

Zero Temperature Lemma: Suppose qnode = {qi}i∈V and qedge = {qij}(i,j)∈E are fixed-points of the sum-
product algorithm at temperature T , Define q̂node = {q̂i}i∈V and q̂edge = {q̂ij}(i,j)∈E as q̂i = qTi and q̂ij = qTij.
Then, for any T → 0, q̂node and q̂edge approach to the fixed-points of the max-product inference.

Based on the zero temperature lemma, we thus have the estimated max-marginals for MAP inference is updated
as

q(xi) ∝ lim
T →0

{[θi(xi)
1/ĉi

∏
k∈N (i)

µ̂
cki/ĉi
ki (xi)]

1/T }T

∝ lim
T →0

θi(xi)
1/ĉi

∏
k∈N (i)

µ̂
cki/ĉi
ki (xi)

∝ θi(xi)
1/ĉi

∏
k∈N (i)

µ̂
cki/ĉi
ki (xi)

(29)

The belief update equations (Eq. 22) remains the same and the estimated beliefs correspond to max-marginals.
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B.3 Generalization over existing algorithms

For BP, we have ĉi = ci +
∑

k∈N (i) cik = 1 and cij = 1. Correspondingly, our belief and message update equations
of general form is reduced to

qi(xi) ∝ θi(xi)
∏

k∈N (i)

µ̂ki(xi)

qij(xi, xj) ∝ θi(xi)θj(xj)θij(xi, xj)

∏
k∈N (i) µ̂ki(xi)

µ̂ji

∏
k∈N (j) µ̂kj(xj)

µ̂ij

µ̂ji(xi) = max
xj

θj(xj)θij(xi, xj)

∏
k∈N (j) µ̂kj(xj)

µ̂ij

(30)

which are identical to the equations we have for BP algorithm. For TRW-BP, we have ĉi = ci +
∑

k∈N (i) cik = 1
and cij = ρij . Correspondingly, our belief and message update equations of general form is reduced to

qi(xi) ∝ θi(xi)
∏

k∈N (i)

µ̂ρki

ki (xi)

qij(xi, xj) ∝ θi(xi)θj(xj)θ
1/ρij

ij (xi, xj)

∏
k∈N (i) µ̂

ρki

ki (xi)

µ̂ji

∏
k∈N (j) µ̂

ρkj

kj (xj)

µ̂ij

µ̂ji(xi) = max
xj

θj(xj)θ
1/ρij

ij (xi, xj)

∏
k∈N (j) µ̂

ρkj

kj (xj)

µ̂ij

(31)

which are identical to the equations we have for TRW-MP algorithm. The generalization can be straightforwardly
applied to marginal inference by replacing maximization operation with summation operation.

C Architecture of TMPNN for Message Passing

Given the estimated entropy coefficients, TMPNN performs message passing update under an MPNN framework.
Hidden feature hi is equivalent to unary belief up to a scale factor zi in logarithmic space. To derive message
function and node update function, we first re-write unary belief equation in logarithmic space as

ln qti(xi) = −zti +
1

ĉi
ln θi(xi) +

∑
k∈N (i)

cki
ĉi

ln µ̂t
ki(xi) (32)

where zti = ln
∑

xi
θi(xi)

1/ĉi
∏

k∈N (i) µ̂
cki/ĉi
ki (xi). We denote probability parameters as ϕi = ln θi and messages in

MPNN as mk→i = ln µ̂ki. The aggregated message is then denoted as

mt
i(xi) =

∑
k∈N (i)

cki
ĉi

ln µ̂t
ki(xi) =

1

ĉi

∑
k∈N (i)

cki lnm
t
k→i(xi) (33)

With the mapping hi = ln qi, we in the end have the node update function U as

ht
i(xi) = −zti +

1

ĉi
ϕi(xi) +mt

i(xi) (34)

with
zti = ln

∑
xi

θi(xi)
1/ĉi

∏
k∈N (i)

µ̂
cki/ĉi
ki (xi) = ln

∑
xi

exp(
1

ĉi
ϕi(xi) +mt

i(xi)) (35)

To derive the message function M, we similarly re-write the message equation in logarithmic space as

ln µ̂ji(xi) = ln{max
xj

θj(xj)
1/ĉjθij(xi, xj)

1/cij

∏
k∈N (j) µ̂

ckj/ĉj
kj (xj)

µ̂ij
}

= ln{max
xj

exp(
1

ĉj
ln θj +

1

cij
ln θij +

∑
k∈N (j)

ckj
ĉj

ln µ̂kj(xj)− ln µ̂ij(xi))}
(36)
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With the introduced notations plugged in, we then have

mt
j→i(xi) = ln{max

xj

exp(
1

ĉj
ϕj +

1

cij
ϕij +mt

j(xj)−mt
i→j(xi)) (37)

where ϕij = ln θij . Given 1
ĉj
ϕj +mt

j(xj) = ht
j(xj) + ztj , we obtain the message function M

mt
j→i(xi) = ln{max

xj

exp(
1

cij
ϕij + ht

j(xj) + ztj −mt
i→j)} (38)

Given the mapping hi = ln qi, we obtain the readout function Rnode for unary belief, i.e.,

qi = exp(hT
i ) (39)

For pairwise belief, we first express qij as a function of qi as

qij(xi, x)j) = θij(xi, xj)
1/cij

qi(xi)

µ̂ji

qj(xj)

µ̂ij
(40)

We then re-write the equation in logarithmic space as

ln qij =
1

cij
ln θij(xi, xj) + ln qi + ln qj − ln µ̂ji − ln µ̂ij

=
1

cij
ϕij(xi, xj) + hi + hj −mj→i −mi→j

(41)

Thus, we obtain the readout function Redge for pairwise belief as

qij = exp(
1

cij
ϕij(xi, xj) + hT

i + hT
j −mT

j→i −mT
i→j) (42)

D Propositions and Proofs

Proposition 1. Variational distribution q∗ from TMPNN is locally optimal with pairwise consistency constraint
strictly satisfied. If the set of entropy coefficients satisfy C ∈ Cconcave, q∗ becomes globally optimal.
Proof: We first show the satisfaction of the pairwise consistency constraint. We plug theory-guided message
function into belief functions and we can have

qi(xi) =
∑
xj

qij(xi, xj), ∀(i, j) ∈ E (43)

Hence, pairwise consistency constraint is always satisfied. We further take gradient of Fgeneral w.r.t. q∗ and plug
the belief functions into the gradient, we can have

∂Fgeneral

∂q∗i
= 0, ∀i ∈ V; ∂Fgeneral

∂q∗ij
= 0, ∀(i, j) ∈ E

subject to qi(xi) =
∑
xj

qij(xi, xj)
(44)

Based on (Hazan and Shashua, 2010; Meshi et al., 2012; Cui et al., 2022), if these exists a set of entropy coefficients
C ∈ Cconcave, the generalized Bethe free energy is provably convex. Since the variational distribution from
TMPNN is always stationary point of Fgeneral, given the convexity, we can show that it is always globally optimal
with the consistency constraint strictly satisfied.

D.1 Proposition 2

Given a target probability distribution p, MAP inference error is defined as

∆map(q
∗
C , p) =

∑
i∈V

∑
xi

(pi(xi)− q∗C,i(xi)) ln θi(xi) +
∑

(i,j)∈E

∑
xi,xj

(pij(xi, xj)− q∗C,ij(xi, xj)) ln θij(xi, xj) (45)
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where pi(xi) =
∑

x\xi
p(x) and pij(xi, xj) =

∑
x\(xi∪xj)

p(x). With an optimal set of linear coefficients
C∗ ∈ Cconcave, the MAP inference error is upper bounded by a total entropy approximation scaled by ϵ, i.e.,

∆map(q
∗
C∗ , p) ≤ ϵH(q∗

C∗ ; C∗) (46)

with C∗ = argminC∈Cconcave H(q∗
C ; C).

Proof: Given the outputs from TMPNN qC with C ∈ Cconcave, we have

Fgeneral(q
node,∗
C , qedge,∗

C ; C) ≤ Fgeneral(p
node,pedge; C) (47)

With the definition of Fgeneral and the fact that H(pnode,pedge; C) ≥ 0, we have

∆map(q
∗
C , p) ≤ ϵH(q∗

C ; C) (48)

An optimal set of entropy coefficients C∗ = argminC∈Cconcave H(q∗
C ; C) thus gives a minimal MAP inference error,

which is bounded by an total entropy approximate, i.e.,

∆map(q
∗
C∗ , p) ≤ ϵH(q∗

C∗ ; C∗) (49)

D.2 Proposition 3

TMPNN subsumes existing variational BP algorithms (e.g., BP and TRW-MP) as a generalization. The optimal
MAP inference performance achieved with TMPNN is superior or comparable to existing variational BP algorithms,
i.e., ∆map(q

∗
C∗ , p) ≤ ∆map(q

∗
Cfix , p)

Proof: Given different settings of C, we can derive different existing variational BP algorithms. For BP, we
have ĉi = ci +

∑
k∈N (i) cik = 1 and cij = 1. For TRW-BP, we have ĉi = ci +

∑
k∈N (i) cik = 1 and cij = ρij .

Furthermore, since q∗
C∗ = argminq Fgeneral(q; C∗), we have

U(q∗
C∗)− ϵH(q∗

C∗ ; C∗) ≤ U(q∗
Cfix)− ϵH(q∗

Cfix ; C∗) (50)

with q∗
Cfix denotes the optimal variational distribution minimizing the generalized Bethe free energy specified

with a set of fixed coefficients Cfix. By subtracting U(pnode,pedge) on both sides of Eq. 50, we have

∆map(q
∗
C∗ , p) ≤∆map(q

∗
Cfix , p) + ϵ∆ (51)

with ∆ = H(q∗
C∗ ; C∗)−H(q∗

Cfix ; C∗) ≤ H(q∗
C∗ ; C∗). We can further show that H(q∗

C∗ ; C∗) ≤ δ where δ is a constant
and finite value. For clear derivation, we use notation q and C and derive for the bounds of H(q; C). The following
derivation applies to arbitrary q and C. To derive δ, we firstly re-organize H(q; C) as

H(q; C) =
∑
i∈V

ciH(qi) +
∑

(i,j)∈E

cijH(qi, qj) (52)

We now show that both H(qi) and H(qi, qj) are bounded by a constant value. For H(qi), applying the Jensen’s
inequality yields,

H(qi) = −
∑
xi

qi(xi) ln qi(xi) =
∑
xi

qi(xi) ln
1

qi(xi)
≤ ln

∑
xi

qi(xi)

qi(xi)
= ln ki (53)

where ki indicates the number of states of variable xi. Similarly, we have H(qi, qj) ≤ ln kij where kij indicates the
number of joint configurations of variables xi and xj . Given the bounds for H(qi) and H(qi, qj), we can conclude

H(q; C) ≤ δ =
∑
i∈V

|ci| ln ki +
∑

(i,j)∈E

|cij | ln kij (54)

δ is only a function of underlying graph and coefficients C. Thus, we have ∆ ≤ H(q∗
C∗ ; C∗) ≤ δ. With ∆ ≤ δ, we

can show
∆map(q

∗
C∗ , p) ≤ ∆map(q

∗
Cfix , p) + ϵδ (55)

where δ is not a function of ϵ. Furthermore, given the mild assumption that entropy coefficients C are of finite
values, δ is always finite. With a constant and finite upper bound δ, there always exists a sufficiently small ϵ such
that ∆map(q

∗
C∗ , p) ≤ ∆map(q

∗
Cfix , p).
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E Additional Evaluations

E.1 Tightness of Error Bounds after Training

On loop free graphs (S1-3), TMPNN achieves exact inference results, i.e., ∆map(q
∗
C , p) = 0, and the upper bound

(ϵH(q∗
C)) is tight (0.000521 on average). For loopy graphs (S4-13), the respective gaps shown in Table 8. As

shown, the gap is positively correlated to the inference error and increases as the graph complexity increases.

Table 8: Tightness of Error Bounds (N=9)

Graph S4 S5 S6 S7 S8 S9 S10 S11 S12 S13
gap 0.0564 0.1557 0.8103 0.1436 1.734 0.2637 2.22 3.178 5.528 8.745

E.2 Effectiveness of the Training Objective

For better training convergence, TMPNN is pre-trained on loop-free graphs (Star, Tree, Path) using exact
inference results as supervision. We simulate 3000 graphs for pre-training with 1000 graphs per type. Exact
inference results are obtained from BP. The pre-trained model is employed for evaluation on both loop-free
graphs and loopy graphs. To better demonstrate the effectiveness of the proposed training objective based on
the generalized Bethe free energy, we perform an ablation study. Particularly, we compare the MAP inference
performance without and with fine tuning through free energy objective. We consider 13 classic graphs with 9
nodes. Results are shown in Table 9.

Table 9: Effectiveness of pre-training (MAP inference accuracy with unit %)

Graph S1♣ S2♣ S3♣ S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 Avg.
w/o 94.67 93.73 92.44 87.11 76.22 77.00 87.89 73.56 85.33 71.44 72.56 66.44 63.00 80.11
w 100.00 100.00 100.00 89.67 77.89 78.78 89.78 74.56 88.11 72.22 73.00 67.00 63.00 82.62

As shown, fine-tuning through the proposed training objective improves TMPNN’s average performance compared
to TMPNN with pre-training only.

E.3 Effectiveness of the Message Initialization

For training-free methods, messages are initialized as ones, following standard settings. We further consider
different initial messages randomly sampled from uniform distribution. Results over 10 different runs are shown
in Tab. 10. As shown, the variance due to different message initialization is small.

Table 10: Multiple initializations for training-free methods (MAP inference on graphs with N=9)

Graph Cycle Ladder Grid C-ladder Barbell Lollipop Wheel Bipartite Tripartite Complete
BP .85±.03 .57±.04 .61±.01 .82±.01 .54±.02 .80±.01 .54±.04 .55±.07 .54±.04 .49±.03

TRW-MP .90±.01 .58±.02 .54±.02 .84±.01 .52±.01 .83±.01 .49±.02 .83±.01 .50±.01 .49±.02
MPLP .82±.02 .64±.02 .64±.02 .83±.01 .53±.04 .78±.01 .52±.06 .51±.04 .52±.02 .51±.01

E.4 Comparison to Sampling-based method

Sampling-based methods adopt a fundamentally different approach from variational BP algorithms. Sampling-
based methods approximate target distributions via sampling, and the inference performance highly depends on
the sampling strategy. We provide additional comparison to sampling-based methods. Particularly, we compare
the Gibbs sampling method on graphs with 9/16 nodes for MAP inference. We use default hyper-parameters for
experiments: number of samples to be collected is 5000, the burn-in is 1000 and the stride size is 2. Results are
shown in Table 11.
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Table 11: Comparison to sampling-based methods for MAP inference (Accuracy %; loop-free♣)

Graph N=9 N=16
Gibbs TMPNN Gibbs TMPNN

star♣ 78.22 100.00 64.75 100.00
tree♣ 81.18 100.00 68.81 100.00
path♣ 82.33 100.00 69.81 100.00
cycle 80.33 89.67 65.81 91.75
ladder 83.78 77.89 70.63 69.56
grid 81.22 78.78 73.75 68.13

c-ladder 83.78 89.78 75.00 73.44
barbell 80.67 74.56 73.13 70.38
lollipop 80.33 88.11 69.00 68.25
wheel 81.22 72.22 71.75 68.63

bipartite 84.89 73.00 69.00 64.06
tripartite 81.00 67.00 71.06 62.75
complete 78.67 63.00 57.63 61.63
Average 81.36 82.62 69.24 76.81

Comparing TMPNN to Gibbs sampling, we can see that TMPNN outperforms Gibbs sampling on average for
both N=9 and N=16. Besides, without requiring sampling, TMPNN is less time consuming than Gibbs sampling
method.

E.5 Visualization of the comparison to SOTA MAP Inference Methods

Training-free methods. We visualize the comparison to training-free methods on graphs with N=9 and N=16
in Figure 3. This visualization is corresponding to the Table 1 in the main body of the paper.

Figure 3: Visualization of the comparison to SOTA training-free methods

Training-based methods. We visualize the comparison to training-based methods on graphs with N=9 and
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N=16 in Figure 4. This visualization is corresponding to the Table 2 in the main body of the paper.

Figure 4: Visualization of the comparison to SOTA training-based methods

E.6 Comparison to SOTA Marginal Inference Methods

Training-free methods. We here show the detailed results on different structure. We compare to two training-
free methods: BP and TRW-BP. As shown in Table 12, TMPNN achieves better average performance for both
sizes and it performs significantly better than SOTA training-free methods in loopy graphs. For example, in
Complete(S13) graph, TMPNN outperforms BP by about two orders of magnitude (the measure is in logarithmic
scale) on graphs of size 9 and 16. In loop-free graphs, TMPNN is nearly exact (inference error ∼ 1e− 9), and the
tiny inference errors are caused by roundoff errors.

Table 12: Comparison to SOTA Training-free Methods for Marginal Inference (− log10DKL; loop-free♣)

Graph N=9 N=16
BP TRW-BP TMPNN BP TRW-BP TMPNN

S1♣ 10.00 10.00 8.96 10.00 10.00 8.83
S2♣ 10.00 10.00 9.81 10.00 10.00 8.81
S3♣ 10.00 10.00 9.13 10.00 10.00 8.82
S4 7.06 6.07 9.18 7.12 6.59 8.98
S5 6.19 4.97 6.26 5.82 4.66 5.46
S6 5.92 4.64 5.91 5.70 4.45 4.90
S7 7.12 6.08 8.80 5.67 4.34 5.64
S8 4.84 4.35 4.87 4.27 3.85 4.20
S9 6.68 6.06 7.25 2.34 2.26 3.94
S10 4.70 4.04 4.85 4.29 1.57 4.40
S11 3.96 3.63 4.27 1.53 1.44 3.53
S12 3.34 3.52 3.90 0.81 3.27 3.39
S13 1.22 3.26 3.39 0.60 3.15 3.21

Average 6.23 5.89 6.66 5.24 5.04 5.70
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Training-based methods. We here show the detailed results compared to two training-based methods: node-
GNN and GNN-Mimic-BP. For GNN-Mimic-BP, without access to source codes, we only compare to its reported
performance (marked with ∗) in loop-free graphs. As shown in Table 13, TMPNN again achieves better average
performance, particularly in loop-free graphs. For example, TMPNN outperforms node-GNN and GNN-Mimic-BP
by about four orders of magnitude in Star and Tree with 9 nodes, without requiring exact inference results for
training.

Table 13: Comparison to SOTA Training-based Methods for Marginal Inference (− log10DKL; loop-free♣)

Graph N=9 N=16
Node-GNN GNN-Mimic-BP TMPNN Node-GNN GNN-Mimic-BP TMPNN

star (S1)♣ 6.40±0.22 5.74* 8.96±0.00 5.71±0.36 3.08* 8.83±0.00
tree (S2)♣ 5.96±0.14 5.58* 9.81±0.00 5.94±0.13 5.56* 8.81±0.00
path (S3)♣ 6.05±0.19 6.14* 9.13±0.00 5.68±0.11 6.08* 8.82±0.00
cycle (S4) 6.31±0.21 - 9.18±0.00 6.22±0.27 - 8.98±0.00
ladder (S5) 5.59±0.13 - 6.26±0.00 5.45±0.12 - 5.46±0.19
2D grid (S6) 5.60±0.21 - 5.91±0.27 5.53±0.08 - 4.90±0.01

circular ladder (S7) 6.00±0.32 - 8.80±0.00 5.52±0.11 - 5.64±0.07
barbell (S8) 5.12±0.07 - 4.87±0.05 4.98±0.05 - 4.20±0.01
lollipop (S9) 5.73±0.15 - 7.25±0.00 4.48±0.14 - 3.94±0.00
wheel (S10) 5.06±0.05 - 4.85±0.04 4.89±0.07 - 4.40±0.17

bipartite (S11) 4.90±0.04 - 4.27±0.00 4.28±0.10 - 3.53±0.01
tripartite (S12) 4.62±0.03 - 3.90±0.00 4.04±0.03 - 3.39±0.00
complete (S13) 4.33±0.02 - 3.39±0.00 3.80±0.06 - 3.21±0.00

Average 5.51±0.14 5.82∗ 6.66±0.03 5.12±0.13 4.91∗ 5.70±0.04

E.7 Computing Time Evaluation

We report the average convergence time on graphs of different types and different sizes. Testing is performed on a
laptop with a 8-Core Intel Core i9 processor with CPU only. Convergence criteria is the same as stated in the
paper. Results are shown in Table 14 and Table 15.

Table 14: Convergence time evaluation (N=9) (Second s; loop-free♣ )

Graph N=9
BP TRW-MP MPLP Node-GNN V-MPNN TMPNN

star♣ 0.0069 0.0022 0.0064 0.0076 0.0107 0.0042
tree♣ 0.0083 0.0027 0.0041 0.0078 0.0092 0.0089
path♣ 0.0134 0.0050 0.0044 0.0078 0.0105 0.0135
cycle 0.0317 0.0198 0.0048 0.0082 0.0338 0.0143
ladder 0.1212 0.1014 0.0056 0.0080 0.0135 0.0193
grid 0.1249 0.0936 0.0058 0.0081 0.0109 0.0194

circular ladder 0.0415 0.0234 0.0055 0.0082 0.0124 0.0158
barbell 0.1608 0.1170 0.0059 0.0080 0.0236 0.0222
lollipop 0.0277 0.0309 0.0051 0.0077 0.0110 0.0184
wheel 0.1591 0.1946 0.0068 0.0097 0.0086 0.0184

bipartite 0.1664 0.0573 0.0064 0.0097 0.0081 0.0216
tripartite 0.2213 0.0626 0.0075 0.0100 0.0077 0.0359
complete 0.2660 0.0812 0.0090 0.0104 0.0173 0.0481
Average 0.1038 0.0609 0.0059 0.0086 0.0136 0.0186

As shown, TMPNN is less consuming compared to BP and TRW-MP, particularly on large and dense graphs.
For example, on graphs of 16 nodes, the average computing time that TMPNN takes is 0.0288s, significantly
smaller than the time that TRW-MP takes (0.2649s). TMPNN is of comparable computational complexity
compared to MPLP. The complexity of Node-GNN depends only on neural network architecture (i.e., the number
of MLP layers) and doesn’t change w.r.t. graphs’ density or size. Leveraging neural networks, node-GNN achieves
overall better efficiency. Similarly, V-MPNN leverages neural networks for message modeling and hence is also
competitive in terms of efficiency.
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Table 15: Convergence time evaluation (N=16) (Second s; loop-free♣ )

Graph N=16
BP TRW-MP MPLP Node-GNN V-MPNN TMPNN

star♣ 0.0112 0.0030 0.0190 0.0080 0.0129 0.0067
tree♣ 0.0242 0.0107 0.0076 0.0081 0.0136 0.0143
path♣ 0.0328 0.0137 0.0077 0.0084 0.0150 0.0162
cycle 0.0503 0.0395 0.0082 0.0119 0.0263 0.0171
ladder 0.2079 0.2563 0.0087 0.0110 0.0175 0.0367
grid 0.2157 0.2802 0.0098 0.0103 0.0113 0.0219

circular ladder 0.2080 0.0889 0.0089 0.0100 0.0134 0.0165
barbell 0.3245 0.3961 0.0151 0.0106 0.0098 0.0122
lollipop 0.2925 0.5565 0.0258 0.0110 0.0126 0.0111
wheel 0.2375 0.3043 0.0116 0.0105 0.0096 0.0363

bipartite 0.2833 0.6390 0.0147 0.0108 0.0088 0.0360
tripartite 0.5167 0.3921 0.0217 0.0118 0.0116 0.0899
complete 0.7323 0.4629 0.0341 0.0118 0.0176 0.0588
Average 0.2413 0.2649 0.0148 0.0094 0.0138 0.0288

E.8 Cross-graph Evaluation

To further demonstrate the effectiveness of TMPNN over data-driven training-based methods, we perform a
cross-graph evaluation to study their generalization ability from loop-free graphs to loopy graphs. For comparison,
we pre-train V-MPNN with loop-free dataset and then apply the initialized V-MPNN to loopy graphs. We
consider MAP inference in graphs with 9 nodes for evaluation. Results are shown in Table 16. As shown, TMPNN
has better generalization ability over graphs with different structures compared to V-MPNN. For example, in
Tripartite (S12), TMPNN achieves 67.00% accuracy, which is 7.22% higher than V-MPNN. V-MPNN employs
neural networks for message modeling, and hence also performs poorly on cross-structure evaluation. On the other
hand, by leveraging the analytical derived message equations which hold true across graphs, TMPNN generalizes
well to graphs with different structures.

Table 16: Cross-graph evaluation: from loop-free to loopy (MAP inference accuracy with unit %)

Methods S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 Avg.
V-MPNN 86.22 75.33 77.56 73.22 74.11 73.22 76.00 77.56 59.78 57.22 73.02
TMPNN 89.67 77.89 78.78 89.78 74.56 88.11 72.22 73.00 67.00 63.00 77.40

E.9 Data Efficiency Evaluation

We study the data efficiency of TMPNN compared to V-MPNN by using only 20% of the training data. We
report the results on each structure in Table 17. As shown, given only 20% training data, TMPNN outperforms
V-MPNN on all the structures.

E.10 Discussions on Large Graphs

Systematically evaluating TMPNN on large graphs presents a considerable challenge due to the absence of exact
inference results. Alternatively, we show the utility of TMPNN on larger graphs through a node classification task.
We consider both real-world graphs and synthetic graphs. It is worth emphasizing that the classification accuracy
evaluation is only a surrogate evaluation. Our primary goal is to show the utility of our approach on large graphs.

Real-world Graph. We consider three real-world benchmark datasets for the node classification task Pol-
Blog (Adamic and Glance, 2005), EuEmail (Leskovec et al., 2007) and CORA (Šubelj and Bajec, 2013). PolBlog
contains 1.49K nodes and 19.09K edges. EuEmail contains 1005 nodes and 16.0K edges. CORA contains
23.1K nodes and 89.1K edges. EuEmail is of a similar size to PolBlog and CORA is much larger than PolBlog.
Following Eswaran et al. (2020), we define potential functions over graphs and perform MAP inference for node
classification task. We use the typical 5-fold cross evaluation protocol and compare against training-free methods
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Table 17: Data Efficiency Evaluation (Accuracy %; loop-free♣)

Graph 100% data 20% data
V-MPNN TMPNN V-MPNN TMPNN

star♣ .93 1.00 .60 1.00
tree♣ .96 1.00 .63 1.00
path♣ .97 1.00 .63 1.00
cycle .85 .90 .54 .82
ladder .77 .78 .61 .69
grid .74 .79 .60 .69

c-ladder .83 .90 .63 .73
barbell .71 .75 .60 .70
lollipop .88 .88 .62 .63
wheel .70 .72 .62 .68

bipartite .74 .73 .50 .54
tripartite .68 .67 .53 .51
complete .65 .63 .49 .56
Average .80 .83 .58 .73

BP, TRW-MP, and MPLP. We also compare it to the training-based method V-MPNN. Due to the lack of
supervision, Node-GNN can’t be applied to these graphs and is thus excluded from comparison. We report the
classification accuracy as shown below.

Table 18: Accuracy Evaluation on Large Real-world Graphs

Graph BP TRW-MP MPLP V-MPNN TMPNN
PolBlog .88 .89 .81 .67 .89
EuEmail .74 .74 .74 .73 .75
CORA .86 .74 .62 .61 .88

We in addition report the computing time of different algorithms as shown below. Evaluation is performed on a
laptop with a 8-Core Intel Core i9 processor with CPU only.

Table 19: Efficiency Evaluation on Large Graphs (Computing time s)

Graph BP TRW-MP MPLP V-MPNN TMPNN
PolBlog 6.8 35.34 206.05 1.68 14.78
EuEmail 5.72 29.25 150.92 1.56 12.86
CORA 586.12 1001.22 792.56 206.71 751.49

From the results, we can see that TMPNN achieves overall better accuracy on different real-world benchmark
graphs, without a huge loss in computational efficiency. Particularly, on PolBlog, the computing time of
TMPNN is 14.78s, around 2× faster than TRW-MP which takes 35.34s. TMPNN takes longer computing time
than BP mainly due to the process of predicting optimal entropy coefficients. While by leveraging the learned
entropy coefficients, TMPNN achieves outstanding accuracy, without much loss in efficiency. V-MPNN models
messages via neural network and thus achieves the best efficiency compared to other methods.

From the results we also observe that, on large real graphs, TMPNN’s performance improvement may not be
significant compared to BP. We hypothesize that the structures of the graphs can be one of the reasons. Despite
the larger size, the real-world graphs are relatively sparse. For instance, given N as the number of nodes and M
as the number of links, the average degree of connectivity (M/N) of a fully connected graph is N − 1. In contrast,
for CORA with N = 23.1K and M = 89.1K, the average degree of connectivity is 3.85, which is much smaller
than N − 1. Unfortunately, we have no control over the complexity of the real data. To go one step further, we
consider synthetic graphs with varying complexity as discussed below.
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Synthetic Graph. To further study along this line, we employ the graph generator from Gatterbauer (2017)
to produce large synthetic graphs and compare TMPNN against BP using the surrogate classification accuracy
metric. Default settings for the graph generator are used. To be specific, we use the “planted distribution model”
function for the graph generation. The input of this function for the experiments is listed in the following: number
of nodes n = 1000. Node label distribution alpha = [1/2, 1/2] for binary variables. Compatibility matrix P is [0.7,
0.3; 0.3, 0.7]. Total number of edges m = n× d. Distribution is ‘powerlaw’ with exponent equals ‘-0.3’. ‘directed’
argument is set to be ‘False’ for generating undirected graphs. The rest of the arguments are using default values.
Given the inputs, the graph generation function outputs an adjacency matrix and node class labels that are used
for classification accuracy evaluation. The synthetic graphs consist of a total of N=1000 nodes. We vary the
average degree of connectivity (d) as d = 10, 20, 30. Notably, these complexities surpass those of the real-world
graphs we evaluated on. To better indicate the complexity, we also report the maximum degree of connectivity
among nodes and the total number of edges (N × d). Results are shown in Table 20.

Table 20: Case study on synthetic graph with varying average degree of connectivity

Average (Max) degree of connectivity Total number of edges BP TMPNN
10 (89) 10,000 0.503 0.797
20 (180) 20,000 0.597 0.842
30 (271) 30,000 0.497 0.999

On these three specific cases, TMPNN outperforms BP significantly, achieving notably higher classification
accuracy on large and complex graphs. These values show that the performance is influenced by the average
degree of connectivity of graph structures. Nonetheless, more surrogate studies as future work are required to
fully understand the TMPNN’s performance enhancement as the graph size and complexity increase. Besdes, we
want to emphasize that this evaluation is an indirect assessment of TMPNN’s inference accuracy. It remains
challenging to comprehensively evaluate TMPNN on large graphs due to the absence of exact inference results.
We will further study these issues as our future work.

E.11 Convergence Curve

We also plot the accuracy vs iteration curve. We consider MAP inference and plot the average accuracy over
graphs of 9 nodes with different structures. The curve is shown in Figure 5. As the number of iterations increases,
the average accuracy increases and then converges.

Figure 5: Accuracy vs iteration curve
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