CLASSIFICATION

Classification

 Definition: assign an object to one of several predefined categories

- Given:
 - A set of predefined classes
 - A number of attributes
 - A learning set
- Goal:
 - Predict the class of unclassified data

Applications

- A medical researcher wants to analyze patients' data to determine who is at risk of heart disease:
 - Categories: at-risk, not-at-risk
 - Data set: (Age, heart rate, blood pressing, smoking, heart disease in family, <u>class</u>)
- A company would like to analyze customer data to predict which customers would likely leave
- A scientist would like to classify trees by looking at the leaves it produces

General Approach

2 Step process

- 1. Learning step: uses the training data to build a classification model
- 2. Classification step: uses the model from step 1 to predict the class of test data and estimate accuracy of the model

• Supervised learning since the class of the training data is given

Methods

- Decision Trees
- Classification Rules
- Naïve Bayes, Bayes Networks
- Neural Networks
- Nearest Neighbor
- Ensemble Methods

Decision Boundaries

Border line between two neighboring regions of different classes is known as decision boundary

Decision Boundaries

Border line between two neighboring regions of different classes is known as decision boundary

Decision Trees

- Performs well across wide range of situations
- Requires little effort
- Readily understandable by consumer

• CART (classification and regression trees) originally proposed

Decision Tree Rules

Rule-Based Ordering

classify records by using a collection of "if...then..." rules. (Skin Cover=feathers, Aerial Creature=yes) ==> Birds

(Body temperature=warm-blooded, Gives Birth=yes) ==> Mammals

(Body temperature=warm-blooded, Gives Birth=no) ==> Birds

(Aquatic Creature=semi)) ==> Amphibians

(Skin Cover=scales, Aquatic Creature=no) ==> Reptiles

(Skin Cover=scales, Aquatic Creature=yes) ==> Fishes

(Skin Cover=none) ==> Amphibians

Class-Based Ordering

(Skin Cover=feathers, Aerial Creature=yes) ==> Birds

(Body temperature=warm-blooded, Gives Birth=no) ==> Birds

(Body temperature=warm-blooded, Gives Birth=yes) ==> Mammals

(Aquatic Creature=semi)) ==> Amphibians

(Skin Cover=none) ==> Amphibians

(Skin Cover=scales, Aquatic Creature=no) ==> Reptiles

(Skin Cover=scales, Aquatic Creature=yes) ==> Fishes Rules that belong to the same class appear together.

Example: Riding lawn mower owners

Owners

Income (in thousands)	Thousands Sq. Feet
60.0	18.4
85.5	16.8
64.8	21.6
61.5	20.8
87.0	23.6
110.1	19.2
108.0	17.6
82.8	22.4
69.0	20.0
93.0	20.8
51.0	22.0
81.0	20.0

Nonowners

Income (in thousands)	Thousands Sq. Feet	
75.0	19.6	
52.8	20.8	
64.8	17.2	
43.2	20.4	
84.0	17.6	
49.2	17.6	
59.4	16.0	
66.0	18.4	
47.4	16.4	
33.0	18.8	
51.0	14.0	
63.0	1418	

Riding lawn mower owners Where is first split?

12

Decision Tree Construction

- Recursive partitioning
- Determine split by measure of impurity
 - Entropy: $-\sum_k p_k \log p_k$ Range: [0, 1]
 - Gini index: $1 \sum_{k=1}^{m} p_k^2$ Range: [0, (m-1)/m]
 - p_k is proportion of observations from class k
 - *m* is the number of classes
 - What is the range of Gini index for 2 classes? for 10 classes?
- Less impurity => better split

Gini Index vs. Entropy

Income

Min Gini: 0.371, Min Entropy: 0.804

Riding lawn mower owners Where is first split?

15

Riding lawn mower owners Where is second splits, etc..?

Riding lawn mower owners

New household (\$60,000 income, 20,000 sq. feet)? Owner

Decision Trees

Advantages

- Nonparametric
 - No prior assumptions about probability distribution
- Inexpensive to train a model and classify a test record
- Easy to interpret
- Robust to noise, redundant attributes

Disadvantages

- Finding optimal decision tree is NPcomplete
- Do not generalize well to certain Boolean problems
- Number of records at leaf nodes may be too small for statistical significance
- Limited expressiveness for relationship between continuous attributes

Disadvantage: Continuous attributes

Applications of Decision Trees

- Binomial Option Pricing
 - Value of an option (asset) at expiration
- Real Option Analysis
 - Decision a company makes
 - Expand (purchase land for drilling)
 - Abandon project

- Competing Projects
 - Expand product (hire additional workers)
 - Marketing operations

https://hbr.org/1964/07/decision-trees-for-decision-making

https://www.investopedia.com/articles/financial-theory/11/decisions-trees-finance.asp

To air or not to air at the Super Bowl

- Is the commercial appealing?
- How is the economy?
- How does our advertisement compare to competitors'?
- What is the quality of our product?

1 - Air Commercial 2-Don't Air Commercial 3 – Commercial is appealing 4 – Commercial is not appealing 5 - Economy is strong 6 - Economy is not weak 7 – Competitors air advertisements 8 – Competitors do not air advertisements 9 – Product is of high quality (please note the this is not a final outcome but a variable) 10 - Product is of low quality

Implementation - Data

- X data matrix (e.g. data.<u>data</u>)
 - Capital X to denote this is a matrix, there are multiple features / attributes
- y outcome / label (e.g. data.<u>target</u>)
 - Lowercase y denotes this is a vector. For each item, predict 1 value
 - Possible to have multiple outcomes that may be related (e.g. weight and BMI)
 - Desire to build single model to predict both outcomes
 - Outside the scope of this course

Implementation - Model

- 1. Import the class from sklearn import tree
- 2. Define the model clf = tree.DecisionTreeClassifier()
- 3. Train the model clf = clf.fit(X,y)
- 4. Make predictions with trained model
 - Predict class (highest probability)
 y_predict = clf.predict(X_test)
 - Or, predict probability of each class
 y_prob = clf.predict_proba(X_test)

Currently uses default parameters

How to change the parameter?

clf = tree.DecisionTreeClassifier() class sklearn.tree. DecisionTreeClassifier (criterion='gini', splitter='best', max depth=None, min samples split=2, min samples leaf=1, min weight fraction leaf=0.0, max features=None, random state=None, max leaf nodes=None, min impurity decrease=0.0, min impurity split=None, class weight=None, presort=False) [source] A decision tree classifier. Read more in the User Guide. Parameters: criterion : string, optional (default="gini") clf = tree.DecisionTreeClassifier(criterion = 'entropy') The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. splitter : string, optional (default="best") The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split. Example: clf = tree.DecisionTreeClassifier(max depth : int or None, optional (default=None) criterion = 'entropy', max_depth = 10) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: If int, then consider min samples split as the minimum number. If float, then min samples split is a percentage and ceil(min samples split * n samples) are the minimum number of samples for each split.

24

Decision Tree Tuning Variables

- Variables tune in this course
 - criterion function to evaluate split quality
 - max_depth height of tree
 - min_samples_split number of samples at a node before split
 - min_samples_leaf number of samples at a leaf
 - min_weight_fraction_leaf how pure is a leaf (0.0 means all items are same class)

- Special case variables:
 - random_state
 - If comparing multiple classifiers, set random state
 - Removes random element of training
 - Always generate same model for given random state
 - class_weight
 - If 1 class is significantly less frequent among items (1/10 or less)

Performance evaluation

- Training errors: number of misclassified records in the training set
- Generalization errors: the expected error of the model on previously unseen records

• Goal: reduce both training errors AND generalization errors

Decision Tree Example

tree size vs. training error

Performance Evaluation

Confusion Matrix:

		Predicted Class	
		Class = 1	Class = 0
Actual Class	Class = 1	f ₁₁	f ₁₀
	Class = 0	f ₀₁	f ₀₀

• Accuracy: fraction of correct predictions $accuracy = \frac{f_{11} + f_{00}}{f_{11} + f_{10} + f_{01} + f_{00}}$

• Error rate: fraction of wrong predictions $error_rate = \frac{f_{01} + f_{10}}{f_{11} + f_{10} + f_{01} + f_{00}}$

Underfitting and Overfitting

- Underfitting: when the model is too simple
- Overfitting: when the model is built to tightly fit the training set

Overfitting due to Noise

Decision boundary is distorted by noise point

Overfitting due to Lack of Representative Samples

Lack of data points in the lower half of the diagram makes it difficult to predict correctly the class labels of that region

Overfitting due to Lack of Representative Samples

Lack of data points in the lower half of the diagram makes it difficult to predict correctly the class labels of that region

Other Performance Measures

- Speed: computational cost involved in generating and using the model
- Robustness: ability to make correct prediction using noisy/missing values
- Scalability: Ability to construct the classifier given large amounts of data
- Interpretability: level of insight provided by the classifier

Handling Overfitting

- Early Stopping Rule
 - Stop expanding when observed gain below a threshold

- Post-pruning
 - Subtree Replacement: Replace subtree with leaf node
 - Subtree Raising: Replace subtree with most frequently used branch

Evaluating the Performance of a Classifier

• Holdout method

• Random sampling

• Cross-Validation

Bootstrapping

Holdout Method

 Given the training data, split into two disjoint sets: the training set and the test set

- Limitations:
 - Fewer data available for training
 - The model is highly dependent on the composition of the two sets
 - The training set and test not independent:
 - An overrepresented class in one set will be underrepresented in the other set

Random Subsampling

- Repeat the holdout method multiple times to improve the estimation
- Accuracy:

$$acc_{sub} = \sum_{i} acc_{i} / k$$

- Limitation:
 - Not using as much data as possible for training
 - Some records used multiple times for training

K-Fold Cross Validation

- Splits the data into k disjoint sets
- In each iteration, one set is used for testing and K-1 for training

• Advantage: all records are used for both training and test

Leave one out – Cross validation

 Special case of cross validation where k = N

- Uses as much data as possible for training
- Test sets mutually exclusive
- Computationally expensive

Bootstrap

- Training records are sampled with replacement
- Training data may contain duplicate records
- Repeat process *b* times to generate *b* bootstrap samples
- When N records are chosen from a N record set, the probability of a record being selected is ~ 0.632

Never being selected: $(1-1/N)^{N} \sim e^{-1} = 0.368$ if N is sufficiently large

Accuracy:

$$acc_{boot} = \frac{1}{b} \sum_{i=1}^{b} (0.632 \times \varepsilon_i + 0.368 \times acc_s)$$

 acc_s : accuracy of original sample as training set ε_i : accuracy of bootstrap sample 40