


Support Vector Machines

• Both decision boundaries classify all 
training points correctly

• Which decision boundary is better?

• Which one is more likely to classify 
correctly unseen test tuples?
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Maximum Marginal Hyperplane

• Each separating hyperplane has a 
margin

• The hyperplane with the largest margin 
is expected to be more accurate

• During the learning phase, the SVM 
searches for the hyperplane with the 
largest margin (MMH)
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Maximum Marginal Hyperplane
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Linear SVM

Any separating hyperplane: 

 wTx + b = 0
where: 

 wT = {w1, w2, …, wn} is a weight vector
 n is the number of attributes
 b is a scalar

When w and b are determined, classify using: 
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Hyperplane Margin
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Support Vectors

• Tuples that fall on the hyperplanes 
defining the margin b12 and b11

• Support vectors are the samples that lie 
on the decision boundary

• Determine the maximum  marginal 
hyperplane
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How to find MMH?

• Goal is to find w and b that maximize the margin:

• Optimization problem:

 Minimize 

 Subject to:

Each training tuple adds one constraint
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How to find MMH?

Minimize 

 Subject to:

• Constrained quadratic optimization problem

• Solved using a Lagrangian formulation and KKT conditions

max
!!

$
"#$

%

𝜆" −
1
2$
",'

𝜆"𝜆'𝑦"𝑦'𝑥" + 𝑥'
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How to find MMH?

• Once you get the Lagrange multipliers 𝜆!	, you can compute the optimal weight 
vector w and b as follows:

• The weight vector w is a linear combination of the training examples that 
correspond to non-zero Lagrange multipliers 𝜆":

w= ∑!"#$ 𝜆!𝑦!𝑥!
Only the support vectors (those with non-zero 𝜆!	) contribute to the weight vector w.

• Once you have w, you can compute the bias term b by using any of the support 
vectors 𝑥(

𝑦%	(𝑤&𝑥%	+b)=1
Can compute b for each support vector and average them to get a more robust estimate of b
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Linear SVM: Nonseparable Case
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Linear SVM: Nonseparable Case
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Linear SVM: Nonseparable Case
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Consider a 
tradeoff between 
margin width and 
training errors



Linear SVM: Nonseparable Case

14



Linear SVM: Nonseparable Case

Minimize 

 Subject to:

• Relax constraints

• Add penalty to objective function
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Nonlinear SVM
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Linear SVM cannot solve this case
Transform data set from original space into a new space 
such that data has linear boundary



Nonlinear SVM – Predicting cancer risk

https://med.nyu.edu/chibi/sites/default/files/chibi/Final.pdf
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Attribute Transformation

• Given features 𝑥!, 𝑥"
• Learn a transformation function 𝜙

• Degree 2 polynomial
• {𝑥#', 	 𝑥#𝑥', 	 𝑥''}
• {𝑥#' − 𝑥#, 𝑥'' − 𝑥'}

• Degree 3 polynomial 
• 𝑥#(, 	 𝑥'(, 	 𝑥#𝑥'', 	 𝑥#'𝑥'	

• Challenges: 
• Find hyperplane in transformed space
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Transformations

Finding hyperplane in 
transformed space
• Original space

• wTx + b = 0
• max

#!
∑$%!& 𝜆$ −

!
"
∑$,( 𝜆$𝜆(𝑦$𝑦(𝑥$ + 𝑥(

• Transformed space
• 𝑤)𝜙 𝑥 + 𝑏 = 0
• max

"!
∑#$%& 𝜆# −

%
'
∑#,) 𝜆#𝜆)𝑦#𝑦)𝜙(𝑥#) , 𝜙(𝑥))

Expensive to compute 𝜙(𝑥$) + 𝜙(𝑥()

Kernel Trick
𝑘 𝑥- , 𝑥. = 𝜙 𝑥- , 𝜙(𝑥.)

• Polynomial
• 𝑘 𝑥!, 𝑥* = 𝑥! 	 1 𝑥* + 1

+

• Radial Basis Function (RBF)
• 𝑘 𝑥!, 𝑥* = exp(− 𝑥! − 𝑥*

'
/2𝜎')

• Sigmoid / Hyperbolic tangent
• 𝑘 𝑥!, 𝑥* = tanh(𝑘	𝑥! 1 𝑥* − 𝛿)
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SVM - Characteristics

• Training time can be slow

• Can be formulated as convex optimization problem

• Highly accurate

• Less prone to overfitting than other methods

• Can be used for numeric prediction as well as classification

• Can be used with categorical attributes by transforming each possible value 
to a binary attribute
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