SUPPORT VECTOR MACHINES

Support Vector Machines

- Both decision boundaries classify all training points correctly
- Which decision boundary is better?
- Which one is more likely to classify correctly unseen test tuples?

Maximum Marginal Hyperplane

- Each separating hyperplane has a margin
- The hyperplane with the largest margin is expected to be more accurate
- During the learning phase, the SVM searches for the hyperplane with the largest margin (MMH)

Maximum Marginal Hyperplane

- Each separating hyperplane has a margin
- The hyperplane with the largest margin is expected to be more accurate
- During the learning phase, the SVM searches for the hyperplane with the largest margin (MMH)

Linear SVM

Any separating hyperplane:

$$\omega^T x + b = 0$$

where:

 $\omega^T = \{w_1, w_2, ..., w_n\}$ is a weight vector *n* is the number of attributes *b* is a scalar

When ω and b are determined, classify using:

$$\hat{\boldsymbol{y}} = \begin{cases} 1 & \text{if } \boldsymbol{\omega}^{\mathrm{T}} \boldsymbol{x} + \mathrm{b} \ge 1 \\ -1 & \text{if } \boldsymbol{\omega}^{\mathrm{T}} \boldsymbol{x} + \mathrm{b} \le -1 \end{cases}$$

Support Vectors

- Tuples that fall on the hyperplanes defining the margin b₁₂ and b₁₁
- Support vectors are the samples that lie on the decision boundary
- Determine the maximum marginal hyperplane

How to find MMH?

- Goal is to find w and b that maximize the margin:
- Optimization problem:

Minimize

$$E(\omega) = \frac{\|\omega\|^2}{2}$$

Subject to:

$$y_{i} = \begin{cases} 1 & \text{if } \omega^{T} x_{i} + b \ge 1 \\ -1 & \text{if } \omega^{T} x_{i} + b \le -1 \end{cases}$$

or $y_i(\omega^T x_i + b) \ge 1, i = 1, 2, ..., N$

Each training tuple adds one constraint

How to find MMH?

Minimize $E(\omega) = \frac{\|\omega\|^2}{2}$ Subject to:

$$y_i = \begin{cases} 1 & \text{if } \boldsymbol{\omega}^{\mathrm{T}} \boldsymbol{x}_i + \mathbf{b} \ge 1 \\ -1 & \text{if } \boldsymbol{\omega}^{\mathrm{T}} \boldsymbol{x}_i + \mathbf{b} \le -1 \end{cases}$$

- Constrained quadratic optimization problem
- Solved using a Lagrangian formulation and KKT conditions $\max_{\lambda_i} \sum_{i=1}^n \lambda_i - \frac{1}{2} \sum_{i,i} \lambda_i \lambda_j y_i y_j x_i \cdot x_j$

How to find MMH?

- Once you get the Lagrange multipliers λ_i , you can compute the optimal weight vector w and b as follows:
- The weight vector w is a linear combination of the training examples that correspond to non-zero Lagrange multipliers λ_i:

 $W = \sum_{i=1}^{n} \lambda_i y_i x_i$

Only the support vectors (those with non-zero λ_i) contribute to the weight vector w.

• Once you have w, you can compute the bias term b by using any of the support vectors x_s

$$y_{s} (w^{T} x_{s} + b) = 1$$

Can compute b for each support vector and average them to get a more robust estimate of b

Consider a tradeoff between margin width and training errors

Minimize
$$E(\omega) = \frac{\|\omega\|^2}{2} + C(\sum_{i=1}^N \zeta_i)^k$$

Subject to:
 $y_i = \begin{cases} 1 & \text{if } \omega^T x_i + b \ge 1 - \zeta_i \\ -1 & \text{if } \omega^T x_i + b \le -1 + \zeta_i \end{cases}$

- Relax constraints
- Add penalty to objective function

Linear SVM cannot solve this case Transform data set from original space into a new space such that data has linear boundary

Nonlinear SVM – Predicting cancer risk

https://med.nyu.edu/chibi/sites/default/files/chibi/Final.pdf

Attribute Transformation

- Given features x_1, x_2
- Learn a transformation function ϕ
- Degree 2 polynomial
 - { x_1^2 , x_1x_2 , x_2^2 } • { $x_1^2 - x_1, x_2^2 - x_2$ }
- Degree 3 polynomial
 - { x_1^3 , x_2^3 , $x_1x_2^2$, $x_1^2x_2$ }
- Challenges:
 - Find hyperplane in transformed space

Transformations

Finding hyperplane in transformed space

- Original space
 - $\omega^T x + b = 0$
 - $\max_{\lambda_i} \sum_{i=1}^n \lambda_i \frac{1}{2} \sum_{i,j} \lambda_i \lambda_j y_i y_j x_i \cdot x_j$
- Transformed space
 - $w^{\mathsf{T}}\phi(x) + b = 0$
 - $\max_{\lambda_i} \sum_{i=1}^n \lambda_i \frac{1}{2} \sum_{i,j} \lambda_i \lambda_j y_i y_j \phi(x_i) \cdot \phi(x_j)$

Expensive to compute $\phi(x_i) \cdot \phi(x_j)$

Kernel Trick $k(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$

- Polynomial • $k(x_i, x_i) = (x_i \cdot x_i + 1)^d$
- Radial Basis Function (RBF) • $k(x_i, x_i) = \exp(-||x_i - x_i||^2/2\sigma^2)$
- Sigmoid / Hyperbolic tangent • $k(x_i, x_j) = \tanh(k x_i \cdot x_j - \delta)$

SVM - Characteristics

- Training time can be slow
- Can be formulated as convex optimization problem
- Highly accurate
- Less prone to overfitting than other methods
- Can be used for numeric prediction as well as classification
- Can be used with categorical attributes by transforming each possible value to a binary attribute