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Support Vector Machines
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- Both decision boundaries classify all
training points correctly

- Which decision boundary is better?

- Which one is more likely to classify
correctly unseen test tuples?




Maximum Marginal Hyperplane

B,

- Each separating hyperplane has a
margin

- The hyperplane with the largest margin
is expected to be more accurate

 During the learning phase, the SVM
searches for the hyperplane with the
largest margin (MMH)
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Linear SVM

Any separating hyperplane:
w'x+b=10
where:
o’ = {w, w, ..., w,} is a weight vector

n is the number of attributes
b is a scalar

When @ and b are determined, classify using:
. |1 fe'x+b>]
Y7121 ife"x+b<-1




Hyperplane Margin

@' x+b=0 /

o'x+b=-1 —

[(L~B)={~1~B)

oo
Margin = &

|

Margin =

—

/V

o'x+b=1




Support Vectors

 Tuples that fall on the hyperplanes
defining the margin b, and by,

e Support vectors are the samples that lie
on the decision boundary

e Determine the maximum marginal
hyperplane




How to find MMH?

- Goal is to find w and b that maximize the margin: ——

o | | @]
- Optimization problem:

[l
2

Minimize E(w) =

Subject to:
if ®'x, +b>1

or y(@'x +b)>1 i=12...N
if ®'x, +b<-1

Each training tuple adds one constraint




How to find MMH?

Minimize
Subject to:

if ®'x, +b>1

if o 'x, +b<-1

- Constrained quadratic optimization problem

- Solved using a Lagrangiag formulation and KKT conditions

1
H}laXE Ai — Ez Alxljyly]xl . Xj
=) 1]




How to find MMH?

e Once you get the Lagrange multipliers 4; , you can compute the optimal weight
vector w and b as follows:

e The weight vector w is a linear combination of the training examples that
correspond to non-zero Lagrange multipliers A;:

W= Xty Ay
Only the support vectors (those with non-zero A; ) contribute to the weight vector w.

e Once you have w, you can compute the bias term b by using any of the support
vectors X

Vs (Wsz +b)=1

Can compute b for each support vector and average them to get a more robust estimate of b




Linear SVM: Nonseparable Case
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Linear SVM: Nonseparable Case

Consider a
tradeoff between
margin width and
training errors
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Linear SVM: Nonseparable Case

wx+b=0




Linear SVM: Nonseparable Case

Minimize , +C(Z§)

Subject to:
if @ x,+b>1-¢,
if 'x, +b<-1+¢,

« Relax constraints

- Add penalty to objective function




Nonlinear SVM
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Linear SVM cannot solve this case
Transform data set from original space into a new space
such that data has linear boundary




Nonlinear SVM — Predicting cancer risk

Cancer \ Cancer | —m- Decision surface

Normal

Normal

» GeneX

https://med.nyu.edu/chibi/sites/default/files/chibi/Final.pdf




Attribute Transformation

 Given features x4, X,
e Learn a transformation function ¢

e Degree 2 polynomial
2 2
o {x1, Xx1%2, x5}
2 2
o {X1 —x1,%5 — X3}

e Degree 3 polynomial
3 3 2 2
o« {x1, x5, x1x3, x1x3}

e Challenges:
 Find hyperplane in transformed space




Transformations

Finding hyperplane in
transformed space

e Original space
° a)Tx + b — 0

1
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e Transformed space

1
. n}leZ?zl Ai - EZL-,,- Aﬂj}’i}’jd)(xi) ) (»b(xj)

l

Expensive to compute ¢(x;) - $(x;)

Kernel Trick

k(x,x) = (d(xp), p(x)))

e Polynomial
d
o k(xi,xj) = (Xi . X] + 1)
« Radial Basis Function (RBF)
25 2
o k(xi,xj) = exp(—”xl- — x]|| /20%)

 Sigmoid / Hyperbolic tangent
o k(xi,xj) = tanh(k x; - x; — 0)




SVM - Characteristics

- Training time can be slow

- Can be formulated as convex optimization problem

- Highly accurate

- Less prone to overfitting than other methods

- Can be used for numeric prediction as well as classification

- Can be used with categorical attributes by transforming each possible value
to a binary attribute




