BAYESIAN CLASSIFIERS

Motivation

- Task: predict if a person is at risk of heart disease
- Deciding factors include diet, exercise, excessive smoking, alcohol abuse
- Other factors such as heredity, …

- The class label of a test record cannot be predicted with certainty even though its attribute set is identical to a training record.
- Bayesian classifiers model probabilistic relationships between $\mathsf{attributes}$

Probability Theory

- Probability measures the amount of uncertainty of an event
	- Probability of rain tomorrow
	- Probability of drawing a red ball from a bin containing 6 red and 11 white balls

- Measured as a number between 0 and 1
	- \cdot p(E) = 0: event E will not occur
	- \cdot p(E) = 1: event E will occur with certainty

Definitions

- The set of all possible events is called the sample space
	- Forecast space: $S = \{Rainy, Cloudy, Sunny\}$
	- Drawing space: $S = \{Red, White\}$
- The sum of probabilities of all outcomes of an event is 1:
	- $p(Rainy) + p(Cloudy) + p(Sunny) = 1$
	- $p(Red) + p(White) = 1$
- A complimentary event E' with respect to event E is the event that E does not occur
	- $p(E) + p(E') = 1$

Definitions

- Two events are mutually exclusive if they cannot occur together • $p(A \cap B) = 0$
- Two events are independent if the chance that each event occurs is independent of the other
- Dependent or independent?
	- Rolling 6 on a die and then rolling 2 on a second roll
	- Picking the first prize winner at a raffle event then picking the second prize winner
- If two events are independent: $p(A \cap B) = p(A)p(B)$

Random Variables

- A variable whose value depends on the outcome of a random experiment
- *P(E)*: the fraction of times E is observed in a potentially unlimited number of experiments
- $P(X=v)$:
	- probability of X having value v
	- probability of all outcomes in which v is observed

- Experiment: toss a coin 4 times
- Let X be the random variable that measures the number of times a head is observed.
- Possible outcomes: HHHH, HHHT, HHTH, HHTT, HTHH (HTHT) HTTT, THHH (THHT) THTT, TTHH, TTHT, TTTH, TTTT

- *What is* $P(X = 2)$? 6/16
- *What is* $P(X \ge 2)$ *?* $6/16 + 4/16 + 1/16 = 11/16$

Continuous Random Variables

• If X can take a continuous range of values: $\langle X \, \langle \, b \rangle = \int_{a}$ *b a* $P(a < X < b) = \int_{a}^{b} f(x) dx$

• *f(x)*: probability density function

• *P(X,Y):* joint probability of two random variables *X* and *Y* If *X* and *Y* are independent: $P(X, Y) = P(X)P(Y)$

Conditional Probability

• *P(Y|X)*: conditional probability of Y given X

$$
P(Y \mid X) = \frac{P(X, Y)}{P(X)}
$$

• If X and Y are independent:

$$
P(Y \mid X) = P(Y)
$$

Bayes Theorem

• Expresses relationship between conditional probabilities:

$$
P(Y \mid X) = \frac{P(X \mid Y)P(Y)}{P(X)}
$$

 $P(X, Y) = P(Y|X)p(X)$ $P(X, Y) = P(X|Y)p(Y)$

- Team 0 wins 65% of the time
- Team 1 wins the remaining matches
- Among games won by Team 0, only 30% come from playing on Team 1's field.
- 75% of victories of Team 1 are obtained at home
- Team 1 will host the next game, who will most likely win?

- Random variables:
	- X: represents the team that will host the game
	- Y: represents the team that will win the game
- Goal: Team 1 will host the next game, who will most likely win?
	- Compute and compare: $P(Y=0 | X=1)$ and $P(Y=1 | X=1)$

- Team 0 wins 65% of the time:
	- $P(Y=0) = 0.65$
- Team 1 wins the remaining matches: $\cdot P(Y=1) = 1 - 0.65 = 0.35$
- Among games won by Team 0, only 30% come from playing on Team 1's field:
	- $P(X=1 | Y=0) = 0.3$
- 75% of victories of Team 1 are obtained at home: • $P(X=1 | Y=1) = 0.75$

Given: $P(Y=0) = 0.65$ $P(Y=1) = 0.35$ $P(X=1 | Y=0) = 0.3$ $P(X=1 | Y=1) = 0.75$ Goal: compute $P(Y=0 | X=1)$ $P(Y=1 | X=1)$

Solution:

 $P(Y=1 | X=1) = P(X=1 | Y=1)P(Y=1) / P(X=1)$ $P(X=1 | Y=1)P(Y=1) / (P(X=1, Y=1) + P(X=1, Y=0))$ $= P(X=1 | Y=1)P(Y=1) / (P(X=1 | Y=1)P(Y=1) + P(X=1 | Y=0)P(Y=0))$ *= 0.75*x*0.35 / (0.75*x*0.35 + 0.3*x*0.65) = 0.5738 P(Y=0 | X=1) = 1 - 0.5738 = 0.4262*

Classification from Statistical Perspective

- Given a set of attributes X and a class attribute Y
- If Y has nondeterministic relationship with X: treat X, Y as random variables
- \cdot In the training phase: learn $P(Y | X)$ for every combination of X
- In the test phase: given test record X', find Y' maximizing *P(Y' | X')*
- *P(Y | X)*: posterior probability of Y • $P(Y)$: prior probability of Y (X) $(Y | X) = \frac{P(X | Y)P(Y)}{P(X)}$ $P(Y|X) = \frac{P(X|Y)P(Y)}{P(X|Y)}$ Posterior distribution of Y \vert Prior distribution of Y

- Task: predict if a borrower will default on his/her payment
- Test record:
	- X = (Home owner = No, Marital Status = Married, Annual Income = \$120K)
Present the AT LIN solution of the state of
- Goal: Compute and compare *P(Yes | X)* and *P(No | X)*

• Estimate the posterior probabilities for every X is difficult

- Using Bayes Theorem:
	- $P(Yes | X) = P(X | Yes)P(Yes) / P(X)$
	- $P(No | X) = P(X | No)P(No) / P(X)$
	- $P(X)$ is the same in both equations and can be ignored
	- *P(Yes)* and *P(No)* can be easily computed from training set

- Using Bayes Theorem:
	- $P(Yes | X) = P(X | Yes)P(Yes) / P(X)$
	- $P(No | X) = P(X | No)P(No) / P(X)$
- Remaining sub-problem:
	- Compute *P(X | Yes)* and *P(X | No)*: the conditional probability *P(X|Y)*
- 2 Methods:
	- Naïve Bayes Classifier
	- Bayesian Belief Networks

Naïve Bayes Classifier

• Assumes that the attributes X are **conditionally independent** given class label Y

$$
X = (X_1, X_2, X_3, ..., X_d)
$$

$$
P(X | Y = y) = \prod_{i=1}^{d} P(X_i | Y = y) = P(X_1 | Y = y)P(X_2 | Y = y)...P(X_d | Y = y)
$$

Naïve Bayes Classifier

• Conditional Independence:

 $P(X, Y | Z) = P(X | Z)P(Y | Z)$

 $P(X_1, X_2, ..., X_k | Y) = P(X_1 | Y)P(X_2 | Y)....P(X_k | Y)$

• Idea: instead of computing the class conditional probability for every combination of *X*, only estimate *Xi* given *Y*

$$
P(Y \mid X) = \frac{P(Y) \prod_{i=1}^{k} P(X_i \mid Y)}{P(X)}
$$

• Find the class (value of Y) that maximizes numerator

Categorical Attributes

• If X_i is categorical attribute, then $P(X_i = x_i | Y = y_i) =$ number of instances having both $Y = y_i$ and $X_i = x_i$ divided by number of instances having $Y = y_i$

- P(Home owner = $No \mid No$) = 4/7
- P(Marital status = Divorced | Yes) = $1/3$

Continuous Attributes I

- Discretize each continuous attribute then replace each value by its corresponding interval
- $P(X_i | Y = y_i)$ = number of instances having both $Y = y_i$ and X_i in the corresponding interval divided by number of instances having $Y = y_i$

Continuous Attributes I

P(Annual Income = 75k-100k | Yes) = 3/3

Continuous Attributes I

- The estimate error depends on the discretization strategy and the number of intervals
- If the number of intervals is too large:
	- Too few records in each interval, so unreliable estimate
- If the number of intervals is too small:
	- May join classes and miss decision boundary

Continuous Attributes II

- Assume a certain probability distribution for the continuous variable
- Estimate parameters of distribution from training sample
- Normal distribution: 2 2 2 $(x_i - \mu_{ii})$ $2\pi\sigma_{ii}^2$ $(X_i = x_i \mid Y = y_i) = \frac{1}{\sqrt{1 - \frac{2\sigma_{ij}^2}{c^2}}}$ $x_i - \mu_{ij}$ *ij* $P(X_i = x_i | Y = y_j) = \frac{1}{\sqrt{1 - x_j}} e^{-2\sigma^2}$ μ_{I} $\pi\sigma$ - - $= x_i \mid Y = y_i$) =
- μ_{ii} : sample mean of attribute X_i of all training records belonging to class y_i
- $\sigma_{\!ij}^{\;\;2}$: sample variance of same set
- \cdot Obtain μ_{ij} and σ_{ij} ² from the training data

Continuous Attributes II - Example

What is $P($ Income = 120K | No)?

$$
\mu_{\text{income,No}} = (125 + 100 + 70 + 120 + 60 + 220 + 75) / 7
$$
\n
$$
= 110
$$
\n
$$
\sigma_{\text{income,No}}^2 = 2975
$$
\n
$$
\sigma_{\text{income,No}} = 54.54
$$
\n
$$
P(\text{Income} = 120 | \text{No}) = \frac{1}{\sqrt{2\pi} (54.54)} e^{-\frac{(120 - 110)^2}{2 (2975)}}
$$
\n
$$
= 0.0072
$$

Example of Naïve Bayes Classifier

Test Record: X= (home owner = No, Marital Status = Married, Income = 120K)

More likely to default or not?

 P (Home Owner=Yes|No) = 3/7 P (Home Owner=No|No) = 4/7 P (Home Owner=Yes|Yes) = 0 P (Home Owner=No|Yes) = 1 $P(Marital Status=Single|No) = 2/7$ $P(Marital Status=Divorced|No) = 1/7$ $P(Marital Status=Married|No) = 4/7$ $P(Marital Status=Single|Yes) = 2/3$ $P(Marital Status=Divorced|Yes) = 1/3$ $P(Marital Status=Married|Yes) = 0$ For Annual Income: If class=No: sample mean=110 sample variance=2975 If class=Yes: sample mean=90 sample variance=25

Example of Naïve Bayes Classifier

Test Record: X= (home owner = No, Marital Status = Married, Income = 120K)

 P (Home Owner=Yes $|No| = 3/7$ $P(Home Owner=NolNo) = 4/7$ P (Home Owner=Yes|Yes) = 0 P (Home Owner=No|Yes) = 1 $P(Marital Status=Single|No) = 2/7$ $P(Marital Status=Divorced|No) = 1/7$ $P(Marital Status=Married|No) = 4/7$ $P(Marital Status=Single|Yes) = 2/3$ $P(Marital Status=Divorced|Yes) = 1/3$ $P(Marital Status=Married|Yes) = 0$

For Annual Income: If class=No: sample mean=110 sample variance=2975 If class=Yes: sample mean=90 sample variance=25

 $P(Yes | X) = P(X | Yes)P(Yes) / P(X)$ $P(No | X) = P(X | No)P(No) / P(X)$

P(X | No) = P(Home Owner=No | Class=No) \times P(Married | Class=No) \times P(Income=120K | Class=No) $= 4/7 \times 4/7 \times 0.0072 = 0.0024$

P(X | Yes) = P(Home Owner=No | Class=Yes) \times P(Married | Class=Yes) \times P(Income=120K | Class=Yes) $= 1 \times 0 \times 1.2 \times 10^{-9} = 0$

Since $P(X | No)P(No) > P(X | Yes)P(Yes)$ Therefore $P(No | X)$ > $P(Yes | X)$ \Rightarrow Class = No

Implementation

Functions

- from sklearn.naive_bayes import GaussianNB
- GaussianNB
	- Likelihood of features follows a Gaussian distribution $P(x_i|y) \sim N(\mu_v, \sigma_v)$ for continuous attributes
- BernoulliNB
	- All features are Boolean (True or False, 1 or 0)
- MultinomialNB
	- Multiple classes

Parameters

- Typically not set
- GaussianNB
	- Prior probability of each class
- BernoulliNB and MultinomialNB
	- fit prior learn the class prior probability
	- \bullet class prior specify probability of each class 29

Problem with Naïve Bayes Classifier $P(Y | X) = P (X_1 | Y) P(X_2 | Y) ... P (X_n | Y) P (Y) / P (X)$ Test Record:

X= (home owner = Yes, Marital Status = Divorced, Income = 120K)

 $P(X \mid Yes) = 0$ P(home owner = Yes\Y=yes)=0

- •If $P(X_i | Y) = 0$ for an attribute X_i then $P(Y|X) = 0$
- •If a sample set does not cover all values, the naïve Bayes classifier may not be able to classify some test records

Solution

•m-estimate approach for estimating conditional probabilities

$$
p(x_i \mid y_i) = \frac{n_{xy} + mp}{n_y + m}
$$

•*ny*: total number of instances from class *yi*

- • n_{xy} : total number of instances from class y_i with value x_i
- *p*: user specified parameter, prior probability of Y
- •*m*: equivalent sample size parameter

Characteristics

- Robust to noise because noise points averaged in estimations
- Can handle missing values by ignoring records with missing values
- Robust to irrelevant attributes: if X_i is irrelevant, $p(X_i|Y)$ becomes uniformly distributed
- Correlated attributes degrade performance
- Conditional independence may not hold for all attributes
	- Use Bayesian Belief Networks

Bayesian Belief Network

- Specifies the dependencies between attributes
- Two components:
	- A directed acyclic graph: each node represents an attribute
	- A set of conditional probabilities table

Bayesian Belief Network

• *Each variable is conditionally independent of its non descendants given its parents*

Conditional Probability: $P(X|\X) = P(X|\pi(X))$

Joint Probability: $P(X) = \prod_{i=1}^{N} p(X_i | \pi(X_i))$

 $P(F, S, L, E, P, D) = P(F)P(S)P(L|F, S)P(E|S)P(P|L)P(D|L, E)$

$P(E,D,HD,H,B,C) = P(E)P(D)P(HD|E,D)P(H|D)P(B|H)P(C|HD,H)$

Training Process

- Learn the network topology
	- Constructed by experts
	- Inferred from the data
- If network topology is known:
	- Compute conditional probabilities table
- If network topology is not known:
	- Discrete optimization problem

Prediction

 $P(A=yes, B=yes, C=yes, D=yes) =$ P(A=yes)*P(B=yes | A=yes)*P(C=yes | B=yes)* P(D=yes | B=yes)

Characteristics

- Captures prior knowledge of a domain using a graphical model
- Network construction may be time consuming
- Well suited for incomplete data
	- Expectation-Maximization (EM) algorithm
- Robust to overfitting
- A popular library in Python is called PyMC3 and provides a range of tools for Bayesian modeling, including graphical models like Bayesian Networks.
- Additionally, BNlearn is a R package with benchmark networks

Bayes Theorem

Bayesian Deep Learning