BAYESIAN CLASSIFIERS




Motivation

- Task: predict if a person is at risk of heart disease

- Deciding factors include diet, exercise, excessive smoking, alcohol
abuse

- Other factors such as heredity, ...

- The class label of a test record cannot be predicted with certainty
even though its attribute set is identical to a training record.

- Bayesian classifiers model probabilistic relationships between
attributes




Probability Theory

- Probability measures the amount of uncertainty of an event
- Probability of rain tomorrow

- Probability of drawing a red ball from a bin containing 6 red and 11
white balls

- Measured as a number between 0 and 1
- p(E) = 0: event E will not occur

» p(E) = 1: event E will occur with certainty




Definitions

- The set of all possible events is called the sample space
- Forecast space: S = {Rainy, Cloudy, Sunny}

- Drawing space: S = {Red, White}

- The sum of probabilities of all outcomes of an event is 1:
- p(Rainy) + p(Cloudy) + p(Sunny) = 1
- p(Red) + p(White) = 1

- A complimentary event E’ with respect to event E is the event
that E does not occur

* p(E) +p(E') =1




Definitions

- Two events are mutually exclusive if they cannot occur together
p(ANnB) =0

- Two events are independent if the chance that each event occurs
is independent of the other

- Dependent or independent?
- Rolling 6 on a die and then rolling 2 on a second roll

- Picking the first prize winner at a raffle event then picking the
second prize winner

- If two events are independent: p (A N B) = p(A)p(B)




Random Variables

- A variable whose value depends on the outcome of a random
experiment

- P(E): the fraction of times E is observed in a potentially unlimited
number of experiments

- P(X=v):
- probability of X having value v
- probability of all outcomes in which v is observed




Example

- Experiment: toss a coin 4 times

 Let X be the random variable that measures the number of times a
head is observed.

« Possible outcomes:

HHHH, HHHT, HHTHHHTT)
HTHHCHTHTHTTH)HTTT,

THHH(THHTYTHTH) THTT,
TTHH)TTHT, TTTH, TTTT

« What is P(X = 2)? 6/16
. What is P(X > 2)? 6/16 +4/16 + 1/16 = 11/16




Continuous Random Variables

- If X can take a continuous range of values:
Pla<X <b)y=[ f(x)dx

- f(x): probability density function

- P(X,Y): joint probability of two random variables X'and Y

If X'and Y are independent:
P(X)Y) = P(X)P(Y)




Conditional Probability

- P(Y|X): conditional probability of Y given X

_PX.Y)
- P(X)

P(Y | X)

- If Xand Y are independent:

P(Y | X)=P(Y)




Bayes Theorem

- Expresses relationship between conditional probabilities:
P(X|Y)P(Y)

P(Y|X)= P

P(X,Y) = P(Y|X)p(X)
P(X.Y) = P(X|Y)p(Y)




Bayes Theorem - Example

- Team 0 wins 65% of the time
- Team 1 wins the remaining matches

- Among games won by Team 0, only 30% come from playing on
Team 1’s field.

« 75% of victories of Team 1 are obtained at home

- Team 1 will host the next game, who will most likely win?




Bayes Theorem - Example

- Random variables:
- X: represents the team that will host the game

- Y: represents the team that will win the game

- Goal: Team 1 will host the next game, who will most likely win?
- Compute and compare: P(Y=0 | X=1) and P(Y=1 | X=1)




Bayes Theorem - Example

« Team O wins 65% of the time:
« P(Y=0) = 0.65

- Team 1 wins the remaining matches:
« P(Y=1)=1-0.65=0.35

- Among games won by Team 0, only 30% come from playing on
Team 1’s field:
« P(X=1|Y=0) =0.3

« 75% of victories of Team 1 are obtained at home:
- P(X=1|Y=1) =0.75




Bayes Theorem - Example

Given: Goal: compute
P(Y=0) = 0.65 P(Y=0 | X=1)
P(Y=1) =0.35 P(Y=1 | X=1)
P(X=1]Y=0)=0.3
P(X=1]Y=1)=0.75
Solution:
PY=1|X=1) =PX=1|Y=1)P(Y=1)/P(X=1)
= P(X=1|Y=D)P(Y=1)/(P(X=1, Y=1) + P(X=1, Y=0) )
= P(X=1|Y=DP(Y=1)/(PX=1|Y=1)P(Y=1) + P(X=1| Y=0)P(Y=0) )
= 0.75x0.35/(0.75x0.35 + 0.3x0.65) = 0.5738
P(Y=0|X=1)=1-0.5738 =0.4262




Classification from Statistical Perspective

« Given a set of attributes X and a class attribute Y

- If Y has nondeterministic relationship with X: treat X, Y as random
variables

- In the training phase: learn P(Y | X) for every combination of X

- In the test phase: given test record X/, find Y’ maximizing P(Y’|
X)

- P(Y | X): posterior probability of Y

- P(Y): prior probability of Y _ (¥)

Posterior distribution of Y Prior distribution of Y




Example

« Task: predict if a borrower will default on his/her payment

e Test record:

« X = (Home owner = No, Marital Status = Married, Annual Income = $120K)

IS
>
O

» Goal: Compute and compare P(Yes | X) and P(No | X) b

Tid Home Marital Annual Defaulted
Owner Status Income Borrower

Yes Single 125K No
No Married | 100K No
No Single 70K No
Yes Married | 120K No
No Divorced | 95K Yes
No Married | 60K No
Yes Divorced | 220K No
No Single 85K Yes
No Married | 75K No
No Single 90K Yes
16
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Example

 Estimate the posterior probabilities for every X is difficult
Tid Home Marital Annual Defaulted
Owner Status Income Borrower

Yes Single 125K No
No Married | 100K No
No Single 70K No
Yes Married | 120K No
No Divorced | 95K Yes
No Married | 60K No
Yes Divorced | 220K No
No Single 85K Yes
No Married | 75K No
No Single 90K Yes

« Using Bayes Theorem:
« P(Yes | X) = P(X| Yes)P(Yes) / P(X)
« P(No | X) = P(X | No)P(No) / P(X)
« P(X) is the same in both equations and can be ignored
« P(Yes) and P(No) can be easily computed from training set
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Example

» Using Bayes Theorem:
e P(Yes | X) = P(X | Yes)P(Yes) / P(X)
« P(No | X) = P(X | No)P(No) / P(X)

e Remaining sub-problem:
« Compute P(X | Yes) and P(X | No): the conditional probability P(X|Y)

e 2 Methods:
« Naive Bayes Classifier

 Bayesian Belief Networks




Naive Bayes Classifier

- Assumes that the attributes X are conditionally independent given
class label Y

X = ()(], Xz, X3, ceny XCJ

PX 1Y =p) =] [P(X; 1Y =p) = P(X, | ¥ = )P(X, | Y = )..P(X,; | Y =)




Naive Bayes Classifier

- Conditional Independence:
P(X,Y|Z)=P(X | Z)P(Y | Z)

P(X,,X,,..X, |Y)=P(X, |Y)P(X, |Y)..P(X, |Y)

- Idea: instead of computing the class conditional probability for every
combination of X, only estimate X given Y

P[] P, |Y)
P(X)

P(Y|X)=

- Find the class (value of Y) that maximizes numerator




Categorical Attributes

- If X; is categorical attribute, then
P(X,=x, | Y=v;) = number of instances having
both Y =y, and X, = x; divided by number of
instances having Y =,

- P(Home owner = No | No) = 4/7
- P(Marital status = Divorced | Yes) = 1/3
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Continuous Attributes |

- Discretize each continuous attribute then replace each value by its
corresponding interval

 P(X; | Y=y;) = number of instances having both Y =y, and X; in the
corresponding interval divided by number of instances having Y =y,




Continuous Attributes |

Home Marital Annual Defaulted Home Marital Annual Defaulted
Owner Status Income Borrower Owner Status Income Borrower

Yes Single |[125K |No Yes Single  100k-130k No
No Married |100K |[No No Married  75k-100k No
No Single | 70K No No Single 60K-75Kk  No
Married | 120K |No Married  100Kk-130k__NoO
No Divorced | 95K No Divorced 75k-100k Yes
No Married | 60K No No Married  60K-75Kk NoO
Divorced | 220K | No Divorced 200K-230K __NoO
No Single 85K No Single 75K-100K | Yes
No Married | 75K No No Married  60Kk-75k NO
No Single 90K No Single 75K-100K | Yes

=
a
=
a
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P(Annual Income = 75k-100k | Yes) = 3/3




Continuous Attributes |

- The estimate error depends on the discretization strategy and the
number of intervals

- If the number of intervals is too large:
- Too few records in each interval, so unreliable estimate

- If the number of intervals is too small:
- May join classes and miss decision boundary




Continuous Attributes Il

- Assume a certain probability distribution for the continuous variable
- Estimate parameters of distribution from training sample

- Normal distribution: | ()
P(X, =x, |Y:yj):

- i;: sample mean of attribute X; of all training records belonging to class y,
- 0;7: sample variance of same set

» Obtain p; and o; from the training data




Continuous Attributes Il - Example

What is P(Income = 120K|No)?

Annual Defaulted
Income Borrower

Single
Married
Single
Married
Divorced
Married
Divorced
Single
Married
Single

Mincome No =(125+100+70+120+60+220+75)/7
=110
cSzincome,No = 2975

Gincome,No = 54.54

1 _(120-110)?

P(Income=120| No) = N TIETETT e
T :
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=0.0072




Example of Naive Bayes Classifier

Test Record: X= (home owner = No, Marital Status = Married, Income = 120K)

More likely to default or not?

P(Home Owner=Yes|No) =
P(Home Owner=No|No) =
P(Home Owner=Yes|Yes) =
P(Home Owner=No|Yes) = 1
P(Marital Status=Single|No) = 2/7
P(
P(
P(
P(

P(

Marital Status=Divorced|No) = 1/7
Marital Status=Married|No) = 4/7
Marital Status=Single|Yes) = 2/3
Marital Status=Divorced|Yes) = 1/3
Marital Status=Married|Yes) =

Tid Home Marital Annual Defaulted

Owner Status Income Borrower
Single
Married
Single

Married For Annual Income:

Divorced If class=No: sample mean=110
Married sample variance=2975
Divorced If class=Yes: sample mean=90
Single sample variance=25

Married
Single
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Example of Naive Bayes Classifier

Test Record: X= (home owner = No, Marital Status = Married, Income = 120K)
EP( Yes | X) = P(X | Yes)P(Yes) / P(X)
Home Owner=Yes|No) = 3/7 P(NO ‘ )() P(Xl NO)P(NO) /P()() |

Home Owner=No|No) = 4/7 — — —
Home Owner=Yes|Yes) = 0 P(X| No) = P(Home Owner=No | Class=No)

Home Owner=No|Yes) = 1 x P(Married | Class=No)
Marital Status=Single|No) = 2/7 x P(Income=120K | Class=No)

(
(
(
E
(Marital Status=Divorced|No) = 1/7 =4/7 x 4/7 x 0.0072 = 0.0024
(
(
(
P(

Marital Status=Married|No) = 4/7
Marital Status=Single|Yes) = 2/3
Marital Status=Divorced|Yes) = 1/3
Marital Status=Married|Yes) =

P
P
P
P
P
P
P
P
P

P(X| Yes) = P(Home Owner=No | Class=Yes)
x P(Married | Class=Yes)

For Annual Income: x P(Income=120K | Class=Yes)
If class=No: sample mean=110 =1x0x12x109=0

sample variance=2975
If class=Yes: sample mean=90

sample variance=25 Since P(X | No)P(No) > P(X | Yes)P(Yes)

Therefore P(No | X) > P(Yes | X)
=> Class = No




Implementation

Functions

e from sklearn.naive_bayes import GaussianNB

e GaussianNB
e Likelihood of features follows a Gaussian
distribution P(x;|y)~N(u,, 0, for
continuous attributes

e BernoulliNB

 All features are Boolean (True or False, 1 or
0)

e MultinomialNB
e Multiple classes

Parameters

 Typically not set

e GaussianNB
e Prior — probability of each class

e BernoulliNB and MultinomialNB
o fit_prior —learn the class prior
probability
e class_prior — specify probability of

each class o




Problem with Naive Bayes Classifier
P(Y|X) =P (X)|Y) P(X,|Y)..P (X,|Y)P (Y)/ P (X)

Test Record:
X= (home owner = Yes, Marital Status = Divorced, Income = 120K)

N
P(X| YeS) = () P(home owner = Yes\Y=yes)=0 6\‘@
Home Marital Annual Defaulted
Owner Status Income Borrower
Yes Single 125K No

No Married | 100K No

No Single 70K No

Yes Married | 120K
No Divorced | 95K
No Married | 60K
Divorced | 220K
Single 85K
Married | 75K
Single 90K

=
a

*If P(X:|Y) = 0 for an attribute X; then
P(Y|X)=0

*If a sample set does not cover all
values, the naive Bayes classifier may
not be able to classify some test records
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Solution

*m-estimate approach for estimating conditional probabilities

+~mp
ny—l—m

n,
p('xi | yi) —

°n,: total number of instances from class y;
°n,,: total number of instances from class y; with value x;
* p: user specified parameter, prior probability of Y

*m: equivalent sample size parameter




Characteristics

- Robust to noise because noise points averaged in estimations
- Can handle missing values by ignoring records with missing values

- Robust to irrelevant attributes: if X; is irrelevant, p(X;|Y) becomes
uniformly distributed

- Correlated attributes degrade performance

- Conditional independence may not hold for all attributes
- Use Bayesian Belief Networks




Bayesian Belief Network

- Specifies the dependencies between attributes

« TWo components:
« A directed acyclic graph: each node represents an attribute

- A set of conditional probabilities table
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Bayesian Belief Network

e Each variable is conditionally independent of its non descendants given its parents

Conditional Probability:
PXI\X) = P(X|m(X))

Joint Probability:
P(X) = [TiL1 p(X; | (X))
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Example

P(E,D,HD,H,B,C) = P(E)P(D)P(HD|E,D)P(H|D)P(B|H)P(C|HD,H)

E=Yes
0.7

D

HD=Yes D=Healthy

E=Yes =
D=H eanhy 0.25 D=U nhealthy

E=Yes T - a
setrbeaty 0% | oan D
E=No Disease

D=Healthy 0.55 \\-_ _-/ \-‘

E=No
D=Unhealthy

0.75

HD=Yes
Hb=Yes

S HD=Yes

Bporigh |/ Blood < N Hb=No
0.85 Pressure HD=No
0.2 \\-——---/ Hb=Yes

HD=No
Hb=No




Naive Bayes Classitier?

PX 1Y =p)=][P(X; 1Y =y) = P(X, | Y = p)P(X, | Y = )..P(X, | Y =)




Training Process

- Learn the network topology
- Constructed by experts

 Inferred from the data

- If network topology is known:
- Compute conditional probabilities table

- If network topology is not known:
- Discrete optimization problem




Prediction

P(A=yes, B=yes, C=yes, D=yes) =
P(A=yes)*P(B=yes | A=yes)*P(C=yes | B=yes)*
P(D=yes | B=yes)




Characteristics

- Captures prior knowledge of a domain using a graphical model
- Network construction may be time consuming

- Well suited for incomplete data
- Expectation-Maximization (EM) algorithm

- Robust to overfitting

- A popular library in Python is called PyMC3 and provides a range of
tools for Bayesian modeling, including graphical models like Bayesian
Networks.

- Additionally, BNlearn is a R package with benchmark networks




Bayes Theorem

Prior distribution of Y

Posterior distribution of Y
e
P(X)

I

P(6|D) x p(D|6)p(6)
0: parameters; D: dataset

Bayesian Deep Learning




