


Motivation

• Task: predict if a person is at risk of heart disease
• Deciding factors include diet, exercise, excessive smoking, alcohol 

abuse

• Other factors such as heredity, …

• The class label of a test record cannot be predicted with certainty 
even though its attribute set is identical to a training record.

• Bayesian classifiers model probabilistic relationships between 
attributes
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Probability Theory

• Probability measures the amount of uncertainty of an event
• Probability of rain tomorrow
• Probability of drawing a red ball from a bin containing 6 red and 11 

white balls

• Measured as a number between 0 and 1
• p(E) = 0: event E will not occur
• p(E) = 1: event E will occur with certainty 
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Definitions

• The set of all possible events is called the sample space
• Forecast space: S = {Rainy, Cloudy, Sunny}
• Drawing space: S = {Red, White}

• The sum of probabilities of all outcomes of an event is 1:
• p(Rainy) + p(Cloudy) + p(Sunny) = 1
• p(Red) + p(White) = 1 

• A complimentary event E’ with respect to event E is the event 
that E does not occur
• p(E) + p(E’) = 1
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Definitions

• Two events are mutually exclusive if they cannot occur together
• p(A Ç B)  = 0

• Two events are independent if the chance that each event occurs 
is independent of the other

• Dependent or independent?
• Rolling 6 on a die and then rolling 2 on a second roll
• Picking the first prize winner at a raffle event then picking the 

second prize winner

• If two events are independent: p (A Ç B) = p(A)p(B)
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Random Variables

• A variable whose value depends on the outcome of a random 
experiment

• P(E): the fraction of times E is observed in a potentially unlimited 
number of experiments

• P(X=v): 
• probability of X having value v
• probability of all outcomes in which v is observed
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Example

• Experiment: toss a coin 4 times
• Let X be the random variable that measures the number of times a 

head is observed.
• Possible outcomes:
HHHH, HHHT, HHTH, HHTT,
HTHH, HTHT, HTTH, HTTT,
THHH, THHT, THTH, THTT,
TTHH, TTHT, TTTH, TTTT

• What is P(X = 2)?
• What is P(X ³ 2)? 7

X 0 1 2 3 4

P(X) 1/16 4/16 6/16 4/16 1/16

6/16
6/16 + 4/16 + 1/16 = 11/16



Continuous Random Variables

• If X can take a continuous range of values:

• f(x): probability density function

• P(X,Y): joint probability of two random variables X and Y 
  If X and Y are independent: 

   P(X,Y) = P(X)P(Y)
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Conditional Probability

• P(Y|X): conditional probability of Y given X

• If X and Y are independent:
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Bayes Theorem

• Expresses relationship between conditional probabilities:

P(X,Y) = P(Y|X)p(X)
P(X,Y) = P(X|Y)p(Y) 
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Bayes Theorem - Example

• Team 0 wins 65% of the time
• Team 1 wins the remaining matches
• Among games won by Team 0, only 30% come from playing on 

Team 1’s field.
• 75% of victories of Team 1 are obtained at home
• Team 1 will host the next game, who will most likely win?
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Bayes Theorem - Example

• Random variables:
• X: represents the team that will host the game
• Y: represents the team that will win the game

• Goal: Team 1 will host the next game, who will most likely win?
• Compute  and compare: P(Y=0 | X=1)  and P(Y=1 | X=1)
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Bayes Theorem - Example

• Team 0 wins 65% of the time:   
• P(Y=0) = 0.65

• Team 1 wins the remaining matches:  
• P(Y=1) = 1 - 0.65 = 0.35

• Among games won by Team 0, only 30% come from playing on 
Team 1’s field:      
• P(X=1 | Y=0) = 0.3

• 75% of victories of Team 1 are obtained at home: 
• P(X=1 | Y=1) = 0.75
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Bayes Theorem - Example

14

Goal: compute
       P(Y=0 | X=1)  
       P(Y=1 | X=1)

Given:
     P(Y=0) = 0.65
     P(Y=1) = 0.35
     P(X=1 | Y=0) = 0.3
     P(X=1 | Y=1) = 0.75

Solution:
P(Y=1 | X=1) = P(X=1 | Y=1)P(Y=1) / P(X=1)
                       = P(X=1 | Y=1)P(Y=1) / ( P(X=1, Y=1) + P(X=1, Y=0) )
                       = P(X=1 | Y=1)P(Y=1) / ( P(X=1 | Y=1)P(Y=1) + P(X=1| Y=0)P(Y=0) )
                       = 0.75x0.35 / (0.75x0.35 + 0.3x0.65) = 0.5738
P(Y=0 | X=1) = 1 - 0.5738 = 0.4262



Classification from Statistical Perspective

• Given a set of attributes X and a class attribute Y
• If Y has nondeterministic relationship with X: treat X, Y as random 

variables 

• In the training phase: learn P(Y | X)  for every combination of X
• In the test phase: given test record X’, find Y’ maximizing P(Y’ | 

X’) 
• P(Y | X): posterior probability of Y

• P(Y): prior probability of Y 
15
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Example

• Task: predict if a borrower will default on his/her payment

• Test record: 
• X = (Home owner = No, Marital Status = Married, Annual Income = $120K)

• Goal: Compute and compare P(Yes | X) and P(No | X)
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Example

• Estimate the posterior probabilities for every X is difficult

• Using Bayes Theorem:
• P(Yes | X) = P(X | Yes)P(Yes) / P(X)
• P(No | X) = P(X | No)P(No) / P(X)
• P(X) is the same in both equations and can be ignored
• P(Yes) and P(No) can be easily computed from training set 
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Example

• Using Bayes Theorem:
• P(Yes | X) = P(X | Yes)P(Yes) / P(X)
• P(No | X) = P(X | No)P(No) / P(X)

• Remaining sub-problem: 
• Compute P(X | Yes) and P(X | No):  the conditional probability P(X|Y)

• 2 Methods:
• Naïve Bayes Classifier
• Bayesian Belief Networks
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Naïve Bayes Classifier

• Assumes that the attributes X are conditionally independent given 
class label Y
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Naïve Bayes Classifier

• Conditional Independence: 

• Idea: instead of computing the class conditional probability for every 
combination of X, only estimate Xi given Y

• Find the class (value of Y) that maximizes numerator
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Categorical Attributes

• If Xi is categorical attribute, then
P(Xi = xi | Y = yi) = number of instances having 
both Y = yi and Xi = xi divided by number of 
instances having Y = yi 

• P(Home owner = No | No) = 4/7

• P(Marital status = Divorced | Yes) = 1/3
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Continuous Attributes I

• Discretize each continuous attribute then replace each value by its 
corresponding interval

•  P(Xi | Y = yi) = number of instances having both Y = yi and Xi in the 
corresponding interval divided by number of instances having Y = yi 
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Continuous Attributes I
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60K-75K

60K-75K

60K-75K
75K-100K

75K-100K

75K-100K

75K-100K

100K-130K

100K-130K

200K-230K

P(Annual Income = 75k-100k | Yes) = 3/3



Continuous Attributes I

• The estimate error depends on the discretization strategy and the 
number of intervals

• If the number of intervals is too large: 
• Too few records in each interval, so unreliable estimate

• If the number of intervals is too small: 
• May join classes and miss decision boundary
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Continuous Attributes II

• Assume a certain probability distribution for the continuous variable

• Estimate parameters of distribution from training sample

• Normal distribution: 

• µij: sample mean of attribute Xi of all training records belonging to class yj
• sij

2: sample variance of same set

• Obtain µij and sij
2 from the training data
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Continuous Attributes II - Example

What is P(Income = 120K|No)?

µincome,No =(125+100+70+120+60+220+75)/7
                 = 110

s2income,No = 2975

sincome,No = 54.54
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Example of Naïve Bayes Classifier
Test Record: X= (home owner = No, Marital Status = Married, Income = 120K)

More likely to default or not?
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Example of Naïve Bayes Classifier

P(X | No) = P(Home Owner=No | Class=No)
   ´ P(Married | Class=No)
   ´ P(Income=120K | Class=No)
               = 4/7 ´ 4/7 ´ 0.0072 = 0.0024

P(X | Yes) = P(Home Owner=No | Class=Yes)
                     ´ P(Married | Class=Yes)
                     ´ P(Income=120K | Class=Yes)
                = 1 ´ 0 ´ 1.2 ´ 10-9 = 0

Since P(X | No)P(No) > P(X | Yes)P(Yes)
Therefore P(No | X) > P(Yes | X)

      => Class = No

Test Record: X= (home owner = No, Marital Status = Married, Income = 120K)
P(Yes | X) = P(X | Yes)P(Yes) / P(X)
P(No | X) = P(X | No)P(No) / P(X)
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Implementation

Functions

• from sklearn.naive_bayes import GaussianNB

• GaussianNB
• Likelihood of features follows a Gaussian 

distribution 𝑃 𝑥! 𝑦 ~𝑁(𝜇", 𝜎") for 
continuous attributes

• BernoulliNB
• All features are Boolean (True or False, 1 or 

0)

• MultinomialNB
• Multiple classes

Parameters

• Typically not set

• GaussianNB
• Prior – probability of each class

• BernoulliNB and MultinomialNB
• fit_prior – learn the class prior 

probability
• class_prior – specify probability of 

each class
29



Problem with Naïve Bayes Classifier

•If P(Xi|Y) = 0 for an attribute Xi then 
P(Y|X) = 0
•If a sample set does not cover all 
values, the naïve Bayes classifier may 
not be able to classify some test records
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P(Y | X) = P (X1|Y) P(X2|Y)…P (Xn|Y)P (Y) / P (X) 
Test Record: 
X= (home owner = Yes, Marital Status = Divorced, Income = 120K)

P(X | Yes) = 0 P(home owner = Yes\Y=yes)=0



Solution

•m-estimate approach for estimating conditional probabilities

•ny: total number of instances from class yi

•nxy: total number of instances from class yi with value xi

• p: user specified parameter, prior probability of Y
•m: equivalent sample size parameter
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Characteristics

• Robust to noise because noise points averaged in estimations

• Can handle missing values by ignoring records with missing values

• Robust to irrelevant attributes: if Xi is irrelevant, p(Xi|Y) becomes 
uniformly distributed

• Correlated attributes degrade performance

• Conditional independence may not hold for all attributes 
• Use Bayesian Belief Networks
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Bayesian Belief Network

• Specifies the dependencies between attributes

• Two components: 
• A directed acyclic graph: each node represents an attribute
• A set of conditional probabilities table
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Bayesian Belief Network
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• Each variable is conditionally independent of its non descendants given its parents

Conditional	Probability:	
𝑃 𝑋 \X = 𝑃(𝑋|𝜋(𝑋))

Joint Probability:
P(X) = ∏!"#

$ 𝑝(𝑋!|𝜋(𝑋!))

P(F,S,L,E,P,D) = P(F)P(S)P(L|F,S)P(E|S)P(P|L)P(D|L,E)



Example
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P(E,D,HD,H,B,C) = P(E)P(D)P(HD|E,D)P(H|D)P(B|H)P(C|HD,H)



Naïve Bayes Classifier?
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Training Process

• Learn the network topology
• Constructed by experts
• Inferred from the data

• If network topology is known:
• Compute conditional probabilities table

• If network topology is not known:
• Discrete optimization problem
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Prediction
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A

B

C D

P(A=yes, B=yes, C=yes, D=yes) = 
P(A=yes)*P(B=yes | A=yes)*P(C=yes | B=yes)* 
P(D=yes | B=yes)



Characteristics

• Captures prior knowledge of a domain using a graphical model
• Network construction may be time consuming
• Well suited for incomplete data 
• Expectation-Maximization (EM) algorithm

• Robust to overfitting
• A popular library in Python is called PyMC3 and provides a range of 

tools for Bayesian modeling, including graphical models like Bayesian 
Networks. 
• Additionally, BNlearn is a R package with benchmark networks
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Bayes Theorem
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𝑃(𝜃|𝐷) ∝ 𝑝 𝐷 𝜃 𝑝(𝜃)
𝜃: parameters; 𝐷: dataset

Bayesian Deep Learning 


