ARTIFICIAL NEURAL NETWORKS

DEEP LEARNING

Key Developments

• Proper evaluation of machine learning methods

• Significant increase in amount of data

• Deeper and larger networks

• Faster training using GPUs

Motivation

- Simulate the biological neural system
- The brain consists of neurons linked together
- An artificial neural network (ANN) consists of nodes connected together by links

Perceptron

- Simplest form of ANN
- Binary classifier
- Consists of two types of nodes:
 - Input nodes: represent the input attributes
 - Output node: represents the model output
- Each input node is connected via a weighted link to the output node
- Training a perceptron models consists of adapting the link weights

Exa	m	p	le
LAG			

t: bias factor Sign function: activation

$$= \begin{cases} 1, & \text{if } 0.3x_1 + 0.3x_2 + 0.3x_3 - 0.4 > 0 \\ -1, & \text{if } 0.3x_1 + 0.3x_2 + 0.3x_3 - 0.4 < 0 \end{cases}$$

$$\widehat{y} = \operatorname{sign}(w_d x_d + w_{d-1} x_{d-1} + \dots + w_1 x_1 - t)$$

= sign(w_d x_d + w_{d-1} x_{d-1} + \dots + w_1 x_1 - w_0 x_0) = sign(w \cdot x)

Perceptron Learning

- Initialize the weights to random values ($w_1, w_2, ..., w_m$)
- Keep updating the weights until the output is consistent with the class labels:
 - For each example (x_i, y_i) in the data set
 - Compute the predicted label $\hat{y}_i^{(k)}$
 - Adjust the weights: for each w_i :
 - Update $w_{j}^{(k+1)} = w_{j}^{(k)} + \lambda (y_{i} \hat{y}_{i}^{(k)}) x_{ij}$
- Repeat until training is done weights don't change

 $w^{(k)}$: weight in the k^{th} iteration λ : learning rate x_{ij} : value of j^{th} attribute of i^{th} example x_i

Perceptron Learning

$$w_{j}^{(k+1)} = w_{j}^{(k)} + \lambda(y_{i} - \hat{y}_{i}^{(k)})x_{ij}$$

• If the prediction is correct:

• $y - \hat{y} = 0$ so $w_j^{(k+1)} = w_j^{(k)}$

the weight does not change

- If the prediction is incorrect:
 - the weight is increased/decreased to compensate

If $y_i = +1$ (actual) and $\hat{y}_i = -1$ (predicted): $w_j^{(k+1)} = w_j^k + 2\lambda x_{ij}$ If $y_i = -1$ (actual) and $\hat{y}_i = +1$ (predicted): $w_j^{(k+1)} = w_j^k - 2\lambda x_{ij}$

*The perceptron learning algorithm is based on **error correction** rather than gradient descent

Perceptron Learning

$$w_{j}^{(k+1)} = w_{j}^{(k)} + \lambda (y_{i} - \hat{y}_{i}^{(k)}) x_{ij}$$

- The weight should not be changed drastically
- The learning rate ($\lambda \in [0,1]$) controls the amount of adjustment
- If λ is close to 1:
 - the new weight influenced by the adjustment amount
- If λ is close to 0:
 - the new weight influenced by the old weight

Example: Perceptron

Initialization: w=[1.00 1.00 1.00] error=-0.5800

Example: Perceptron

After 1 data points: w=[0.00 1.31 0.39] error=-0.7400

Example: Perceptron

After 6 data points: w=[-1.00 0.46 0.68] error=-1.0000

Problem with Perceptron

• One Possible Solution (for some initial ω)

After convergence: w=[-1.00 0.46 0.68] error=-1.0000

Problem with Perceptron

Initialization: w=[1.00 -1.00 -1.00] error=-0.0800

After convergence: w=[-3.00 0.45 1.19] error=-1.0000

• One Possible Solution (for some initial ω)

Problem with Perceptron

• Other possible solutions (depending on how ω is initialized)

Application: Stock Prediction

Symbol	%Change Aug-Sept	Returns Sept.	Returns Oct.	
ABC	34	-9	6	U
XYZ	-56	4	-11	D
PQ	20	-34	-8	D
ST	47	15	18	U
features to			lo	abels

use

15

Nonlinear Decision Boundary

The learning algorithm is guaranteed to converge for linearly separable classification problems.

If the problem is not linearly separable, the algorithm may not converge

Exclusive OR (XOR) Example

Hidden Input Output 1.5 Layer Layer Layer In the binary form: + 1 0 w₃₁ (n₃) X₁ •0⊕0=0 n₁ w₅₃ X₂ 0.5 W41 •0⊕1=1 •1⊕0=1 n₅ ≻y 0 0 + •1⊕1=0 W32 W54 -0.5 X_2 n_2 n₄ 0 0.5 1.5 1 W42 X₁ (a) Decision boundary. (b) Neural network topology.

Multilayer ANN

- The network contains several layers
- Intermediary layers: hidden layers
- Nodes in hidden layers: hidden nodes
- *Feed Forward ANN*: nodes in one layer are connected to nodes in the next layer only
- *Recurrent ANN*: nodes additionally connect to nodes in same layer or previous layers

Feed Forward ANN

Feed Forward ANN

- Hidden nodes have 2 functions:
 - Pre-activation $a^{(i)}$
 - Activation h

Multilayer ANN

 Nodes may use activation functions other than the sign function

Model Learning

Goal: find set of weights w that minimizes the error

$$E(w) = \frac{1}{2} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

- \hat{y}_i is a function of w
- Output of ANN (y) is nonlinear => difficult to optimize
- Greedy algorithms:
 - Gradient descent efficient solution
 - Weight update formula dependent on algorithm

Design Issues

- Determine the structure of the network
 - Number of nodes in the input layer:

one input node for each attribute transform categorical into binary: one input node per value

Number of nodes in the output layer

1 node for a two class problem k nodes for a k-class problem

- The network topology: number of hidden layers, hidden nodes, links
- Initialize the weights and bias parameters, usually at random
- Training example with missing values should be removed or estimated

Implementation – Type of Data Mining

What is the output variable?

- Real-valued (Regression)
 - MLPRegressor
 - Squared error

- Categorical (Classification)
 MLPClassifier
 - Softmax

Squared error, $\sum_{k=1}^{K} (f_k(\mathbf{x}) - y_k)^2$ Cross entropy, $-\sum_{k=1}^{K} [y_k \log f_k(\mathbf{x}) + (1 - y_k) \log(1 - f_k(\mathbf{x}))]$ Softmax, $-\sum_{k=1}^{K} y_k \log f_k(\mathbf{x})$

Loss Name, $L(f_i(\mathbf{x}_i; \theta), \mathbf{y}_i) =$

Implementation – Multi-layer Perceptron

class sklearn.neural_network. MLPClassifier (hidden_layer_sizes=(100,), activation='relu', solver='adam', alpha=0.0001, batch_size='auto', learning_rate='constant', learning_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08) [source]

Multi-layer Perceptron classifier.

This model optimizes the log-loss function using LBFGS or stochastic gradient descent.

New in version 0.18.

Parameters: hidden_layer_sizes : tuple, length = n_layers - 2, default (100,)

The ith element represents the number of neurons in the ith hidden layer.

activation : {'identity', 'logistic', 'tanh', 'relu'}, default 'relu'

Activation function for the hidden layer.

- 'identity', no-op activation, useful to implement linear bottleneck, returns f(x) = x
- 'logistic', the logistic sigmoid function, returns f(x) = 1 / (1 + exp(-x)).
- 'tanh', the hyperbolic tan function, returns f(x) = tanh(x).
- 'relu', the rectified linear unit function, returns f(x) = max(0, x)

solver : {'lbfgs', 'sgd', 'adam'}, default 'adam'

The solver for weight optimization.

- · 'lbfgs' is an optimizer in the family of quasi-Newton methods.
- · 'sgd' refers to stochastic gradient descent.
- · 'adam' refers to a stochastic gradient-based optimizer proposed by Kingma, Diederik,

Parameters:

- hidden_layer_sizes
- activation
- max_iter
- early_stopping

- In practice the curves above can be more noisy due to the use of stochastic gradient descent
- As such, it is common to keep the history of the validation set curve when looking for the minimum
 - even if it goes back up it might come back down

Characteristics of Neural Networks

- Multilayer neural networks with at least one hidden layer are universal approximators:
 - Can approximate any function
 - May suffer from overfitting
- Can handle redundant features
- Sensitive to noise
- Training is time consuming
- Classifying a test example is fast
- Hard to interpret

Deep Learning

1943 The first mathematical model mimicking human brain cells		1982 The first CNN		2009 ImageNet, a free database of more than 14 million labeled images		
					Ŷ	
	1960		2000		2012	
	The first attempt on back propagation		Graphics Processing Units (GPUs)		The Era of Modern Deep Learning	

Why Deep Learning Now?

Algorithms

GPUS

Big Data

Deep Learning Pros and Cons

\checkmark Deep learning has led to revolutionary progresses in many applications

Computer vision; natural language processing; autonomous driving; time-series forecasting; data mining

X Low data efficiency

Requires a tremendous amount of training data and their annotations

[Aggarwal,2018; Marcus, 2018]

X Poor cross-dataset generalization

The extracted patterns are data-specific, applying only to scenarios captured by training data [Neyshabur, Behnam, et al, 2017; Kawaguchi, K., Kaelbling, L.P. and Bengio, Y., 2017]

X Lack of Interpretability

The extracted patterns represented as hidden features can not be well interpretated

[Zhang, Q.S. and Zhu, S.C., 2018; Chakraborty, Supriyo, et al, 2017]

Deep Learning = Learning Representations

 Traditional model of pattern recognition: fixed/hand-engineered features + trainable classifier

• End-to-end Learning/feature learning/deep learning: trainable features + trainable classifier

Deep Learning = Learning Representations

• Deep architecture: learn hierarchical representations

Trainable Feature Hierarchies

- A hierarchy of trainable feature transforms
 - Each module transforms its input representation into a higher-level representation
 - High-level features are more global and more invariant
 - Low-level features are shared among categories

Low level features

Edges, dark spots

Mid level features

Eyes, ears, nose

High level features

Facial structure

• Deep learning Goal: make all modules trainable and get them to learn appropriate representations

Deep Learning

• Algorithm/Architecture

- MLP
- Convolutional Neural Networks (CNN)
- Recurrent Neural Networks (RNN)
- Graph Neural Networks (GNN)
- Attention and Transformers
- Training Strategy
 - Supervised
 - Unsupervised generative learning
 - Reinforcement Learning

Algorithm/Architecture

Convolutional Neural Networks (CNN)

- Specialized for image processing tasks, where spatial hierarchies are important.
- Examples: AlexNet/VGG19/ ResNet50

• Recurrent Neural Networks (RNN)

- Best for sequential data such as time series or text. Uses feedback connections to retain memory of previous inputs.
- Example: LSTM

• Graph Neural Networks (GNN)

- Work directly with graph structures (e.g., social networks, molecular structures); Useful in tasks where relationships between elements are important, such as node classification or link prediction.
- Example: GCN; GAT

Attention Mechanism

 Improve the performance of models that deal with sequential data; allows the model to focus on different parts of the input sequence when making predictions, rather than treating all inputs equally.

• Transformer

 utilize attention to model relationships between all elements in a sequence simultaneously

Transformers

Convolutional Neural Networks (CNN)

Convolutional Operation

Examples

• Alexnet explanation and implementation in Tensorflow

• Deeper models:

Comparison					
Network	Year	Salient Feature	top5 accuracy	Parameters	FLOP
AlexNet	2012	Deeper	84.70%	62M	$1.5\mathrm{B}$
VGGNet	2014	Fixed-size kernels	92.30%	138M	19.6B
Inception	2014	Wider - Parallel kernels	93.30%	6.4M	$2\mathrm{B}$
ResNet-152	2015	Shortcut connections	95.51%	60.3M	11B

Recurrent Neural Network (RNN)

• Best for **sequential data** such as time series or text. Uses feedback connections to retain memory of previous inputs.

Comparisons

LSTM

• Long short-term memory network

LSTM

Forget Gate

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

Input Gate

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Cell State

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Output Gate

$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$
$$h_t = o_t * \tanh \left(C_t \right)$$