ARTIFICIAL NEURAL
NETWORKS

DEEP LEARNING

Key Developments

e Proper evaluation of machine learning methods

e Significant increase in amount of data

e Deeper and larger networks

e Faster training using GPUs

Motivation

- Simulate the biological neural system
- The brain consists of neurons linked together

- An artificial neural network (ANN) consists of nodes connected
together by links

v
4 di.4; - .
= RN B
Y AT g L g
Rpeie SRSS
A r S 4 .), L AN NPT <
-, SY .""- ‘_'3,(,1 T B A .
¥ " R ANV RRE LR =59
0 A ‘\. b e 3% '!"t\-'[Kot o “-"’,"
' G - ¥ e \S
\ : 3 R4 T e - R

‘.
W L

a :l 5.':'. b.. -

RELT Y =, A
SN

!

Perceptron

- Simplest form of ANN
- Binary classifier

- Consists of two types of nodes:
- Input nodes: represent the input attributes

- Output node: represents the model output

- Each input node is connected via a weighted link to the output
node

- Training a perceptron models consists of adapting the link weights

4

Example

X, t: bias factor
Sign function: activation

if 0.3x,+03x, +03x;, -04>0

t=04 '
~1 if 0.3x,+0.3x, +03x, 0.4 <0

0
0
1
1
0
1
1
0

(a) Data set. (b) Perceptron.

y=sign(w,x, +w, x +---+wx —1)

=sign(w,x, +w, X, , +---+wx, —wyx,) = sign(w- x)

Perceptron Learning

- Initialize the weights to random values (w;, w,, ..., w,,)

- Keep updating the weights until the output is consistent with the class
labels:

- For each example (x; ;) in the data set
- Compute the predicted label
- Adjust the weights: for each w;:

. Ft+1 k A (k
Update 0 = wi® + A(y, = 9/")x,

J

- Repeat until training is done wik: weight in the kt" iteration
weights don’t change A: learning rate

x;: value of j* attribute of i*" example x; 6

Perceptron Learning

(k+1)

(k) ~ (k)
; _Wj +;L(yi_yi)xij

w
- If the prediction is correct:
+y-y=0 so wk=wW the weight does not change

- If the prediction is incorrect:
- the weight is increased/decreased to compensate

fy;=+1 (actual) and y;=-I (predicted): w7 =wk+21x,;
If y;=-1 (actual) and = +I (predicted): w,* " =wk-24x,;

*The perceptron learning algorithm is based on error correction rather
than gradient descent

Perceptron Learning

(k1) _ (k) N, (k)
wi =w + Ay, -y)X,

- The weight should not be changed drastically

- The learning rate (A € [0,1]) controls the amount of adjustment

* If A is close to 1:
- the new weight influenced by the adjustment amount

- If A is close to O:
- the new weight influenced by the old weight

Example: Perceptron

Initialization: w=[1.00 1.00 1.00] error=-0.5800

Example: Perceptron

After 1 data points: w=[0.00 1.31 0.39] error=-0.7400

Example: Perceptron

After 6 data points: w=[-1.00 0.46 0.68] error=-1.0000

Problem with Perceptron

Initialization: w=[1.00 1.00 1.00] error=-0.5800 After convergence: w=[-1.00 0.46 0.68] error=-1.0000

e One Possible Solution (for some initial o)

Problem with Perceptron

Initialization: w=[1.00 -1.00 -1.00] error=-0.0800 After convergence: w=[-3.00 0.45 1.19] error=-1.0000

e One Possible Solution (for some initial o)

-
O
S
4+
Q
Q
O
S
Q
O .~
-
=
=
-
D
O
O
S
an

BT A
SRRV WINT/
L N A7 777
LU :\%\%%\ W)
_ SSE\%\%\\ \\\
& VB £ 157

| \K%\%\%\\

S\ \E\%@\

-7 p 217 i
Py
Y]
I)

)

« Other possible solutions (depending on how o is initialized)

Application: Stock Prediction

%Change | Returns
Aug-Sept | Sept.
ABC 34 -9
XYZ -56 4
PQ 20 -34
ST 47 15

features to labels
use

Nonlinear Decision Boundary

1.5

1F

X
The learning algorithm is guaranteed to converge for linearly separable

classification problems.
If the problem is not linearly separable, the algorithm may not converge

Exclusive OR (XOR) Example

Hidden
Layer

In the binary form: —
-0 0=0) N
‘0D1=1

*1P0=1
*1D1=0

(a) Decision boundary. (b) Neural network topology.

Multilayer ANN

- The network contains several layers

- Intermediary layers: hidden layers

- Nodes in hidden layers: hidden nodes

- Feed Forward ANN: nodes in one layer are e
connected to nodes in the next layer only

- Recurrent ANN: nodes additionally connect to
nodes in same layer or previous layers

Feed Forward ANN

_, B! n
WXL —

TRERE -
)

o
==

Feed Forward ANN

- 1 L L+1
a(l) — W(I)X_l_b(l) a(l) — W(l)h(l y +b(l) a(L+1) — W(L+)h() +b(+1)

h(l) _ act(a(”) h(l) _ act(a(”) f= Out(a(L+l))

e Hidden nodes ha\(e 2 functions:
e Pre-activation a®
o Activation h

Linear function Sigmoid function

Multilayer ANN

Nodes may use activation
functions other than the
sign function

0 ' ' 0

Tanh function Sign function

ReLU

R(z) =maxz(0, z)

Model Learning

- Goal: find set of weights w that minimizes the error

1 & A o
E0) =2 (7, =5’

- y. is afunction of w
- Output of ANN () is nonlinear => difficult to optimize

- Greedy algorithmes:
- Gradient descent efficient solution

- Weight update formula dependent on algorithm

Design Issues

- Determine the structure of the network
- Number of nodes in the input layer:

one input node for each attribute
transform categorical into binary: one input node per value
- Number of nodes in the output layer

I node for a two class problem

k nodes for a k-class problem
- The network topology: number of hidden layers, hidden nodes, links

- Initialize the weights and bias parameters, usually at random

- Training example with missing values should be removed or estimated

23

Implementation — Type of Data

What is the output variable?

» Real-valued (Regression)
« MLPRegressor

e Squared error

o Categorical (Classification)
« MLPClassifier

e Softmax

Loss Name, L(fi(x;;0),y;) =

Squared error,

>kt (B0 =y10)?

Cross entropy,

— >kt Ivklog fi() + (1 = yi) log(1 — £ ()]
Softmax,

— S"n_4 Yk log fi(x)

Implementation — Multi-layer Perceptron

class sklearn.neural network. MLPClassifier (hidden_layer_sizes=(100,), activation=relu’, solver=adam’,

alpha=0.0001, batch_size=auto’, learning_rate=constant’, learning_rate_init=0.001, power_t=0.5, max_iter=200,

shuffle=True, random_state=None, to/=0.0001, verbose=False, warm_start=False, momentum=0.9, P a ra m et e rS o

nesterovs_momentum=True, early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08) °
[source]

Multi-layer Perceptron classifier. ° h [d d e n_l dyer_S izes

This model optimizes the log-loss function using LBFGS or stochastic gradient descent.

e activation

New in version 0.18.
Parameters: hidden_layer_sizes : tuple, length = n_layers - 2, default (100.)

e max_iter

The ith element represents the number of neurons in the ith hidden layer.

activation : {lidentity’, ‘logistic’, ‘tanh’, ‘relu’}, default ‘relu’ e 4 rly Sto p p| ng

Activation function for the hidden layer.

* ‘identity’, no-op activation, useful to implement linear bottleneck, returns f(x) = x
‘logistic’, the logistic sigmoid function, returns f(x) = 1/ (1 + exp(-x)).
‘tanh’, the hyperbolic tan function, returns f(x) = tanh(x).
‘relu’, the rectified linear unit function, returns f(x) = max(0, x)

solver : {Ibfgs’, ‘sgd’, ‘adam’}, default ‘adam’

The solver for weight optimization.

« ‘Ibfgs’ is an optimizer in the family of quasi-Newton methods.

» ‘sgd’ refers to stochastic gradient descent.

« ‘adam’ refers to a stochastic gradient-based optimizer proposed by Kingma, Diederik,

Early Stopping

Validation
set curve

Average Loss

Training
set curve

Early stopping point.

Epoch

e In practice the curves above can be more noisy due to the use of stochastic
gradient descent

e As such, it is common to keep the history of the validation set curve when
looking for the minimum
—even if it goes back up it might come back down

Characteristics of Neural Networks

- Multilayer neural networks with at least one hidden layer are
universal approximators:

- Can approximate any function
- May suffer from overfitting

- Can handle redundant features
- Sensitive to noise

- Training is time consuming

- Classifying a test example is fast

- Hard to interpret

Deep Learning

1943

The first
mathematical
model
mimicking
human brain
cells

1982
The first CNN

2009

ImageNet,

a free database

of more than
14 million

labeled images

1960

The first

attempt on
back

propagation

2000

Graphics
Processing
Units (GPUs)

2012

The Era of
Modern Deep
Learning

Why Deep Learning N

S

ANNOUNCING NVIDIA BLACKWELL PLATFORM
FOR TRILLION- PARAMETER SCALE GENERATIVE A\

PERCHIP
68 Tranustors

th

RAS ENGINE

DECOMP
100% In-System Seif-Test

(n) LSM/ELM (0) ESN

Algorithms

-t ﬂ i

=~ D Google .
wrplanes wccecion dlephant BACKGROUND_Google Blg Data

Caltech101

&Mﬁsm -

Caltech256

Deep Learning Pros and Cons

v Deep learning has led to revolutionary progresses in many applications

Computer vision; natural language processing; autonomous driving; time-series forecasting; data

mining

X Low data efficiency

Requires a tremendous amount of training data and their annotations

[Aggarwal,2018; Marcus, 2018]

X Poor cross-dataset generalization

The extracted patterns are data-specific, applying only to scenarios captured by training data
[Neyshabur, Behnam, et al, 2017; Kawaguchi, K., Kaelbling, L.P. and Bengio, Y., 2017]

X Lack of Interpretability

The extracted patterns represented as hidden features can not be well interpretated

[Zhang, Q.S. and Zhu, S.C., 2018; Chakraborty, Supriyo, et al, 2017]

Deep Learning = Learning Representations

 Traditional model of pattern recognition: fixed/hand-engineered features +
trainable classifier

Head-crafted Feature “Simple” Trainable
Extractor Classifier

e End-to-end Learning/feature learning/deep learning: trainable features + trainable
classifier

Trainable Feature

Extractor Trainable Classifier

Deep Learning = Learning Representations

e Deep architecture: learn hierarchical representations

Trainable Feature

Extractor Trainable Classifier

More than one
stage of non-linear
feature extraction

32

Trainable Feature Hierarchies

A hierarchy of trainable feature transforms
« Each module transforms its input representation into a higher-level representation

« High-level features are more global and more invariant
« Low-level features are shared among categories

Low level features Mid level features High level features

.-’;!7! _TRL
UGS N

- . av
il o @

Edges, dark spots Eyes, ears, nose Facial structure

« Deep learning Goal: make all modules trainable and get them to learn
appropriate representations

Deep Learning

o Algorithm/Architecture

MILP
Convolutional Neural Networks (CNN)

Recurrent Neural Networks (RNN)
Graph Neural Networks (GNN)

Attention and Transformers

e Training Strategy
e Supervised
e Unsupervised — generative learning
e Reinforcement Learning

Algorithm/Architecture

Convolutional Neural Networks (CNN)

o Specialized for image processing tasks, where spatial hierarchies are
important.

o Examples: AlexNet/VGG19/ ResNet50

Recurrent Neural Networks (RNN)

o Best for sequential data such as time series or text. Uses feedback
connections to retain memory of previous inputs.

o Example: LSTM

Graph Neural Networks (GNN)

o Work directly with graph structures (e.g., social networks, molecular
structures); Useful in tasks where relationships between elements are
important, such as node classification or link prediction.

Example: GCN; GAT

Attention Mechanism

o Improve the performance of models that deal with sequential data; allows
the model to focus on different parts of the input sequence when making
predictions, rather than treating all inputs equally.

Transformer

o utilize attention to model relationships between all elements in a
sequence simultaneously

Transformers

\.

~\

Output
Probabilities

-
Add & Norm

Feed
Forward

| Add & Norm z

s 1
Add & Norm

Feed
Forward

Multi-Head

Attention

2

]

Add & Norm

f->| Add & Norm |

Multi-Head
Attention

Masked
Multi-Head

Attention

 —

L

J

—t

\.

J

Positional
Encoding

)

&

Input
Embedding

Output

Embedding

I

Inputs

I

Outputs
(shifted right)

Positional
Encoding

Convolutional Neural Networks (CNN)

fully connected Iayers

convolution

__I_I

10
30
5

8

79
19

flatten

=

' lu\\
NIy /
/"‘\ /
(\

, 44
‘\\ 4I softmax
Al Mn \
: \\‘\v "ﬂ

‘,o‘\ :m n class 1

Yl WA

ww.\
‘0) class 2

class 3

A
\

UL NN
AR

Kernel Matrix

C
O
par
(O
S
()
Q.
O
0
-
O
)
=
O
>
C
O
@

Image Matrix_—_ 400

Examples

e Alexnet explanation and implementation in Tensorflow

3

CONV Overlapping Overlapping
1x11, Max POOL CONV Max POOL CONV

stride=4, 96 3x3, 96 5x5,pad=2 3x3, 256 3x3,pad=1

96 kernels stride=2 l 256 kernels stride=2 384 kernels

F’-- — e — »>
(27+2°2-5)11 by (27-3)12 +1 (13+2*1-3)/1

==
Bl (227-11)4 +1 (55-3)2+1 R +1 =27 =13 #1 =13
=99 = 27 27 13 E
13

—_— E ——

Overlapping
CONV CONV Max POOL O

3x3,pad=1 3x3,pad=1 256 3x3, 256
384 kernels 256 kernels stride=2

e

e S

(13+271-3)1 (13+2%1-3)M1 (13-3)/2 +1

+1 =13 +1 =13 =6 -
13 6 O

13 ¢

e Deeper models:

Comparison
Network Salient Feature topd accuracy |Parameters
AlexNet Deeper 84.70% 62M
VGGNet Fixed-size kernels 92.30% 138M
Inception Wider - Parallel kernels 93.30% 6.4M
ResNet-152 Shortcut connections 95.51% 60.3M

Recurrent Neural Network (RNN)

(1) ()
7 il

wg w:g

=3

=n

o Best for sequential data such as time series or text. Uses feedback connections to
retain memory of previous inputs.

Comparisons

RNN LSTM

Forget gate

. \

o

\/')\(9 Reset gate Update gate

Input gate Output gate

LSTM

e Long short-term memory network

CM ~ Sig | = Sigmoid function

| - tanh function

= point-by-point
multiplication

= point-by-point
addition

e w— —— — e e

= vector connections

LSTM CELL

\

A J
'

Output Gate)/

LSTM CELL

ff = (T(“’f'lllf [..I'f] + I)f)

Input Gate
I', _(T(“-,'[,'f 1..1';] f ’),)

(.-',?tunh(”}-ﬂh,,|..r,] - be)

Ci=[fi*xCi—1 + 1 * Cy
Output Gate
Oy :0’(”'0 [h!—l"rl] 2 l)u)

hy = oy * tanh (C})

