

Key Developments

• Proper evaluation of machine learning methods

• Significant increase in amount of data

• Deeper and larger networks

• Faster training using GPUs

2

Motivation

• Simulate the biological neural system
• The brain consists of neurons linked together
• An artificial neural network (ANN) consists of nodes connected

together by links

3

Perceptron

• Simplest form of ANN
• Binary classifier
• Consists of two types of nodes:
• Input nodes: represent the input attributes
• Output node: represents the model output

• Each input node is connected via a weighted link to the output
node
• Training a perceptron models consists of adapting the link weights

4

Example

5

t: bias factor
Sign function: activation

Perceptron Learning

• Initialize the weights to random values (w1, w2, …, wm)
• Keep updating the weights until the output is consistent with the class

labels:
• For each example (xi, yi) in the data set
• Compute the predicted label
• Adjust the weights: for each wj:
• Update

• Repeat until training is done
 weights don’t change

6

)(ˆ kiy

w(k): weight in the kth iteration
l: learning rate
xij: value of jth attribute of ith example xi

Perceptron Learning

• If the prediction is correct:
• y - ŷ = 0 so wj(k+1) = wj(k) the weight does not change

• If the prediction is incorrect:
• the weight is increased/decreased to compensate

7

If yi = +1 (actual) and ŷi = -1 (predicted): wj
(k+1) = wj

k +2lxij
If yi = -1 (actual) and ŷi = +1 (predicted): wj

(k+1) = wj
k -2lxij

ij
k
ii

k
j

k
j xyyww)ˆ()()()1(-+=+ l

*The perceptron learning algorithm is based on error correction rather
than gradient descent

Perceptron Learning

• The weight should not be changed drastically

• The learning rate (l Î [0,1]) controls the amount of adjustment

• If l is close to 1:
• the new weight influenced by the adjustment amount

• If l is close to 0:
• the new weight influenced by the old weight

8

Example: Perceptron

9

Example: Perceptron

10

Example: Perceptron

11

12

Problem with Perceptron

• One Possible Solution (for some initial w)

Problem with Perceptron

13

• One Possible Solution (for some initial w)

Problem with Perceptron

14
• Other possible solutions (depending on how w is initialized)

Application: Stock Prediction

Symbol %Change
Aug-Sept

Returns
Sept.

Returns
Oct.

ABC 34 -9 6
XYZ -56 4 -11
PQ 20 -34 -8
ST 47 15 18

15

features to
use

labels

U

U

D

D

Nonlinear Decision Boundary

16

The learning algorithm is guaranteed to converge for linearly separable
classification problems.
If the problem is not linearly separable, the algorithm may not converge

Exclusive OR (XOR) Example

17

In the binary form:
•0⊕0=0
•0⊕1=1
•1⊕0=1
•1⊕1=0

Multilayer ANN

• The network contains several layers

• Intermediary layers: hidden layers

• Nodes in hidden layers: hidden nodes

• Feed Forward ANN: nodes in one layer are
connected to nodes in the next layer only

• Recurrent ANN: nodes additionally connect to
nodes in same layer or previous layers

18

Feed Forward ANN

19

…
	

xD

x2

x1 y1

y2

yK

…
	

…
	

€

h2
(1)

€

h1
(L)

€

h2
(L)

€

hML

(L)

…	

€

1

€

1

€

1
€

hM1

(1)

€

h1
(1)

…
	

Feed Forward ANN

• Hidden nodes have 2 functions:
• Pre-activation 𝑎 !

• Activation ℎ
20

a(1) =W(1)x+b(1)

h(1) = act(a(1))

a(l) =W(l)h(l−1) +b(l)

h(l) = act(a(l))

a(L+1) =W(L+1)h(L) +b(L+1)

f = out(a(L+1))

x

W(1)

b(1)

a(1)

W(l)

b(l)

a(l)h(l-1)

W(L+1)

b(L+1)

a(L+1) fh(L)

y

Lh(1) h(l)… …

Multilayer ANN
• Nodes may use activation

functions other than the
sign function

21

Model Learning

• Goal: find set of weights w that minimizes the error

• is a function of w
• Output of ANN (y) is nonlinear => difficult to optimize
• Greedy algorithms:
• Gradient descent efficient solution
• Weight update formula dependent on algorithm

22

iŷ

Design Issues
• Determine the structure of the network
• Number of nodes in the input layer:

one input node for each attribute
transform categorical into binary: one input node per value

• Number of nodes in the output layer
 1 node for a two class problem
 k nodes for a k-class problem

• The network topology: number of hidden layers, hidden nodes, links

• Initialize the weights and bias parameters, usually at random
• Training example with missing values should be removed or estimated

23

Implementation – Type of Data Mining

What is the output variable?
• Real-valued (Regression)
• MLPRegressor
• Squared error

• Categorical (Classification)
• MLPClassifier
• Softmax

24

called the empirical risk, leads to the following formulation of the fundamental
optimization problem posed by training a deep model: minimize the empirical
risk plus a regularization term, i.e.,

arg min
θ

1

N

XN

i51

Lðfiðxi; θÞ; yiÞ1λR θð Þ

" #

:

Note that the factor N must be accounted for if one relates the regularization
weight λ here to the corresponding parameter derived from a formal probabilistic
model for the distribution. In deep learning we are often interested in examining
learning curves that show the loss or some other performance metric on a graph as a
function of the number of passes that an algorithm has taken over the data. It is much
easier to compare the average loss over a training set with the average loss over a
validation set on the same graph, because dividing by N gives them the same scale.

To see how deep networks learn, consider composing the final output function
of a network in which fkðxÞ5 fkðakðxÞÞ. This function is applied to an input activa-
tion consisting of akðxÞ. The input frequently comprises a computation of the
form aðxÞ5WhðxÞ1 b, where function a(x) takes a vector argument and returns
a vector as its result, so that akðxÞ is just one of the elements of a(x). Table 10.2
gives commonly used output loss functions, output activation functions, and
underlying distributions from which they derive.

DEEP LAYERED NETWORK ARCHITECTURE

Deep neural networks compose computations performed by many layers.
Denoting the output of hidden layers by h(l)(x), the computation for a network
with L hidden layers is:

fðxÞ5 f aðL11Þ hðLÞ aðLÞ . . . hð2Þ að2Þ hð1Þ að1ÞðxÞ
! "! "! "! "! "! "! "# $

:

Table 10.2 Loss Functions, Corresponding Distributions, and Activation
Functions

Loss Name, Lðfiðxi ; θÞ; yiÞ5 Distribution
Name,

Pðfiðxi; θÞ; yiÞ5

Output Activation
Function,
fkðakðxÞÞ5

Squared error,PK
k51 ðfkðxÞ2ykÞ2

Gaussian,
Nðy; fðx; θÞ; IÞ

1
ð11 expð2 akðxÞÞÞ

Cross entropy,
2
PK

k51 yk log fkðxÞ1 ð12 ykÞ logð12 fkðxÞÞ½ $
Bernoulli,
Bernðy; fðx; θÞÞ

1
ð11 expð2 akðxÞÞÞ

Softmax,
2
PK

k51 yk log fkðxÞ
Discrete or
Categorical,
Catðy; fðx; θÞÞ

expðakðxÞÞPK
j51 expðajðxÞÞ

42310.1 Deep Feedforward Networks

Implementation – Multi-layer Perceptron

25

Parameters:
• hidden_layer_sizes

• activation

• max_iter

• early_stopping

Early Stopping

• In practice the curves above can be more noisy due to the use of stochastic
gradient descent

• As such, it is common to keep the history of the validation set curve when
looking for the minimum
– even if it goes back up it might come back down

Characteristics of Neural Networks

• Multilayer neural networks with at least one hidden layer are
universal approximators:
• Can approximate any function
• May suffer from overfitting

• Can handle redundant features

• Sensitive to noise
• Training is time consuming
• Classifying a test example is fast
• Hard to interpret

27

28

1943
The first

mathematical
model

mimicking
human brain

cells

1960
The first

attempt on
back

propagation

1982
The first CNN

2000
Graphics

Processing
Units (GPUs)

2009
ImageNet,

a free database
of more than

14 million
labeled images

2012
The Era of

Modern Deep
Learning

Deep Learning

Why Deep Learning Now?

29

GPUS

Algorithms

Big Data

Deep Learning Pros and Cons
✓ Deep learning has led to revolutionary progresses in many applications

Computer vision; natural language processing; autonomous driving; time-series forecasting; data
mining

✗ Low data efficiency
Requires a tremendous amount of training data and their annotations

 [Aggarwal,2018; Marcus, 2018]

✗ Poor cross-dataset generalization
The extracted patterns are data-specific, applying only to scenarios captured by training data
[Neyshabur, Behnam, et al, 2017; Kawaguchi, K., Kaelbling, L.P. and Bengio, Y., 2017]

✗ Lack of Interpretability
The extracted patterns represented as hidden features can not be well interpretated

[Zhang, Q.S. and Zhu, S.C., 2018; Chakraborty, Supriyo, et al, 2017]
30

Deep Learning = Learning Representations

• Traditional model of pattern recognition: fixed/hand-engineered features +
trainable classifier

• End-to-end Learning/feature learning/deep learning: trainable features + trainable
classifier

31

Head-crafted Feature
Extractor

“Simple” Trainable
Classifier

Trainable Feature
Extractor Trainable Classifier

Deep Learning = Learning Representations

32

• Deep architecture: learn hierarchical representations

Trainable Feature
Extractor Trainable Classifier

More than one
stage of non-linear
feature extraction

Low level feature Mid level feature High level feature

Trainable Feature Hierarchies
• A hierarchy of trainable feature transforms

• Each module transforms its input representation into a higher-level representation
• High-level features are more global and more invariant
• Low-level features are shared among categories

• Deep learning Goal: make all modules trainable and get them to learn
appropriate representations

33

Deep Learning

• Algorithm/Architecture
• MLP
• Convolutional Neural Networks (CNN)
• Recurrent Neural Networks (RNN)
• Graph Neural Networks (GNN)
• Attention and Transformers

• Training Strategy
• Supervised
• Unsupervised – generative learning
• Reinforcement Learning

34

Algorithm/Architecture
• Convolutional Neural Networks (CNN)

o Specialized for image processing tasks, where spatial hierarchies are
important.

o Examples: AlexNet/VGG19/ ResNet50

• Recurrent Neural Networks (RNN)
o Best for sequential data such as time series or text. Uses feedback

connections to retain memory of previous inputs.
o Example: LSTM

• Graph Neural Networks (GNN)
o Work directly with graph structures (e.g., social networks, molecular

structures); Useful in tasks where relationships between elements are
important, such as node classification or link prediction.

o Example: GCN; GAT

• Attention Mechanism
o Improve the performance of models that deal with sequential data; allows

the model to focus on different parts of the input sequence when making
predictions, rather than treating all inputs equally.

• Transformer
o utilize attention to model relationships between all elements in a

sequence simultaneously 35

Convolutional Neural Networks (CNN)

36

Convolutional Operation

37

Examples
• Alexnet explanation and implementation in Tensorflow

38

• Deeper models:

Recurrent Neural Network (RNN)

39

o Best for sequential data such as time series or text. Uses feedback connections to
retain memory of previous inputs.

Comparisons

40

LSTM
• Long short-term memory network

41

LSTM

42

Forget Gate

Input Gate

Cell State

Output Gate

