


Supervised Learning

• Have labeled examples of the correct behavior to train the model

• For example: handwritten digit classification with the MNIST dataset
• Task: given an image of a handwritten digit, predict the digit class
• Input: the image; Output: the digit class

• Dataset: 70,000 image of handwritten digits labeled by humans
• Training set: first 60,000 images
• Testing: last 10,000 images
• Neural nets already achieved >99% accuracy in the 1990s – still we continue to learn a lot 

from it!
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MNIST dataset
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Unsupervised Learning 

• In generative modeling, we want to 
learn a distribution over some 
dataset, such as natural images

• We can evaluate a generative model 
by sampling from the model and 
seeing if it looks like the data

4



Generative Models

• Unsupervised Learning: only use the input x for learning
• Automatically extract meaningful features for your data
• Leverage the availability of unlabeled data
• Add a data-dependent regularizer to training

• Many neural network based unsupervised learning approaches exist:
• Autoregressive Models
• Autoencoders (Variational Autoencoders)
• Generative Adversarial Networks
• Flow Models
• Diffusion Models Bayesian Network is also a generative model! 



Generative Modeling
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Application

• Data generation

• Data Imputation, denoising, in-painting



Generative modeling

• Text: The models like BERT, GPT-3 perform unsupervised learning by reconstructing 
the next words in a sentence. The GPT-3 models learns from 499 Billion Tokens and 
has 175 Billion parameters.

8



Image 
Generation 
Given Text
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Image Generation Given Text
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Ensemble Method

• Combines multiple base classifiers into one
• Given a test record: output a prediction by taking a vote on 

predictions of base classifiers 



Motivation

• Ensemble method of 25 base classifiers
• Each has error rate e = 0.35
• What is the error rate of the ensemble?
• Identical base classifiers: 

    
• Independent base classifiers:

the ensemble method will make a wrong prediction 
only if more than ½ of the classifiers predict 
incorrectly (suppose 13), in this case the error rate 
is 0.06 which is lower than the error rate of the base 
classifier.



When is ensemble better?

• Independent base 
classifiers

• ei < 0.5



When is ensemble better? 
N = 5
N = 51
N = 501

the higher the number of base classifiers, the 
lower the error rate and the better the 
classification will be.



General Idea



Methods
• Manipulate the training set: 
• Resampling 

• Manipulate the input features: 
• Use subset of features

• Manipulate the class labels: 
• When large number of classes, partition into sets
• Error correcting output coding

• Manipulate the learning algorithm (algorithm specific)
• Change topology in a neural network
• Inject randomness into decision tree growing

The subset can be chosen randomly or based on a 
recommendation of experts. This approach works well with 
data sets that contain highly redundant features.

e.g., bagging and boosting



Algorithm
1: Let D denote the original training data, k the number of base 
classifiers, T the test data

2:  for i = 1 to k do

3: Create training set Di from D

4: Build a base classifier Ci from Di

5:  end for

6: for each test record x in T do

7: C*(x) = Vote(C1(x), C2(x), …, Ck(x))

8: end for



Bagging (Bootstrap Aggregating)

• Repeatedly creates samples with replacement according to 
uniform distribution
• each time you randomly select an observation from the original 

dataset, you put it back into the dataset before the next selection
• The same observation can be selected multiple times within the 

same training set Di.

• Each record: selected with probability 1 – (1-1/N)N 
• Pick class that receives highest number of votes



Algorithm
1: Let D denote the original training data, k the number of base 
classifiers, T the test data

2:  for i = 1 to k do

3: Create a bootstrap sample Di from D

4: Build a base classifier Ci from Di

5:  end for

6: for each test record x in T do

7: C*(x) = Vote(C1(x), C2(x), …, Ck(x))

8: end for



Bagging example

X 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y 1 1 1 -1 -1 -1 -1 1 1 1

•Classifier: decision tree with one level 

•What is the best we can do?

x £ k

Label Label

yes no

x £ 
0.3

1 -1

yes no



Bagging example



Bagging example



Bagging example
If using training set for testing

Ensemble 
Prediction



Boosting

• Adaptively changes the distribution of training examples
• Focuses on the examples that are hard to classify

• How are weights updated? 
• How are predictions combined?

Assign a weight (for getting selected) for each training example
Generate a training set 
Generate a classifier based on the training set
Adjust the weights based on classifier prediction 

Higher weights for examples incorrectly classified
Repeat



Boosting

Original Data 1 2 3 4 5 6 7 8 9 10
Boosting (Round 1) 7 3 2 8 7 9 4 10 6 3
Boosting (Round 2) 5 4 9 4 2 5 1 7 4 2
Boosting (Round 3) 4 4 8 10 4 5 4 6 3 4

• Records that are wrongly classified will have their weights increased

• Records that are classified correctly will have their weights decreased

• Initially all examples are assigned the same weights, however some examples may 
be chosen more than once. For example 3 and 7. Because the sampling is done with 
replacement.

• Suppose 4 is hard to classify

Its weight is increased => it is more likely to be chosen again in subsequent rounds



AdaBoost

• The importance of a base classifier Ci depends on its error rate:

• Use alpha to update the weights of records
• Use alpha to combine results

Importance measure

Error rate



AdaBoost

The importance will have a large 
positive value if the error rate is 
close to 0 and a large negative value 
if the error rate is close to 1 



Weight Update

• Use alpha to update the weights of records

• Weights of correctly classified records decrease
• Weights of incorrectly classified records increase

• Additional step: if ei > 50%, wi = 1/N 

make sure that the sum of all 
weights is equal to 1.

If any intermediate rounds produce an error rate higher than 50%, 
the weights are reverted back to their original uniform value and 
the resampling procedure is repeated.



Making prediction

• Each classifier contributes based on its weight

allow the adaboost to penalize models that have poor accuracy



Example
x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y 1 1 1 -1 -1 -1 -1 1 1 1

Actual



Example

• boosting technique focus on the 
training example that are wrongly 
classified, it can be susceptible to 
overfitting. 

• i.e., higher testing error and poor 
generalization performance.

• How can we formally analyze the 
generalization error of a poor 
predictive model? 



Bias – Variance (& noise) Decomposition

• Classification Error = Bias + Variance + Noise

• Bias: 
• The ability of the model to approximate the data 
• The error of the best classifier

• Variance: 
• Stability of the model in response to new training data
• Error of the trained classifier with respect to the best classifier



Bias

High Bias Low Bias

Independent of the training data
If the model is too simple, the solution is biased. It does not fit the data

High bias: 
prediction error is 
high



Variance
Depends on the training data, decreases with more data
If the model is too complex, it is very sensitive to small changes in the data

- a model shows better 
generalization performance if 
it  has a lower bias and lower 
variance. 

- If a model show low bias by 
high variance, it is susceptible 
to overfitting



Bagging vs. Boosting

• Bagging reduces variances by taking average
• Boosting reduces both bias and variances
• Boosting might hurt performance on noisy data. Bagging does 

not have this problem
• Bagging is easier to parallelize
• In practice, bagging and boosting are powerful techniques





Classification

• Approaches: 
• Decision trees, nearest neighbors, Bayes classifiers, perceptron, 

artificial neural networks, SVM …

• Characteristics: 
• Prone/robust to noise and overfitting
• Linear vs. non linear model
• Different training/testing speeds
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Big Oh
• One of the most fundamental tools for computer scientists to analyze the cost of an 

algorithm

• Measure of how many operations needed to perform a calculation, typically worst case 
scenario

• We usually interested in the rate of growth which could be:
- logarithmic: O(log n) . An example, you divide the structure in half over and over again 
and do a constant number of operations for each split.
- linear: O(n)
- linearithmic: O(n log n)
- quadratic: O(n2)
- exponential: O(nc)

• “worst case scenario”: We only care about the biggest "term" here.



Big Oh
• Assume we have N instances, each instance has d features, there are only 2 classes, and 

they are balanced
• Training time will be some function of N, denoted as O(N)
• Focus on the powers over constants. 

• 2N calculations = O(N)
• Comparing every instance with every other instance is O(𝑁×𝑁) 	= 	𝑂(𝑁!)

• Notation can also be used for size of model
• KNN stores all training instances in memory, thus needs O(Nd) memory
• Naïve Bayes stores 𝑃 𝑥! 𝑌 = 𝑦!  for each feature, 𝑥!, thus needs O(d) memory



Comparison
Model Train Time Test 

Time
Interpretable Robust to noise Robust to 

redundant 
features

Scalable to 
large 
dimensions

Decision Tree 𝑂(𝑁𝑑	𝑙𝑜𝑔 𝑁 ) 𝑂 𝑤
W = max 
depth

Yes Yes Yes No

Nearest 
Neighbor

𝑂(1) 𝑂(𝑁𝑑) No No No Yes

Naïve Bayes 𝑂(𝑁𝑑) 𝑂(𝑑) Yes Yes No Yes

Multilayer 
Neural 
Network

𝑂(𝑁𝑑𝑘𝑒) 𝑂(𝑑𝑘) No No Yes No

SVM 𝑂(𝑁!) or 𝑂(𝑁") 𝑂(𝑑) No Yes* (soft margin) No Yes

Bagging Classifier dependent Classifier dependent Yes Classifier dependent

AdaBoost Classifier dependent Classifier dependent No Classifier dependent

𝑁 – number of instances
𝑑 – number of features
𝑘 – number of latent features (e.g. nodes in hidden layer)
𝑒 – number of epochs (iterations through data)



sklearn implementation

Model sklearn function

Decision Tree sklearn.tree.DecisionTreeClassifier

Nearest Neighbor sklearn.neighbors.KNeighborsClassifier

Naïve Bayes sklearn.naive_bayes.GaussianNB

Multilayer Neural Network sklearn.neural_network.MLPClassifier

SVM sklearn.svm.SVC

Bagging sklearn.ensemble.BaggingClassifier

AdaBoost sklearn.ensemble.AdaBoostClassifier


