ASSOCIATION MINING




Definition

- Search for patterns recurring in the given data set

- Given a set of item sets or transactions, find rules predicting the
occurrence of items based on the occurrences of other items in
the transactions




Applications

e Netflix movie recommendations
f Cards} -> Mad Me

1T ——
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e Google search
e Suggested autofill

e Google.com, search “how to”, top 3 suggestions

« Order of webpages / Ads

e Search history
e Location
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Applications (cont’d)

- Market basket analysis: what items do customers buy together
{Bread, Milk} => {Paper Towel}

- Recommender System: A sales manager at an electronic store talking

to a customer who recently purchased a computer and a camera, what
should he recommend next?

{Video camera} => {warranty, memory card}

- Customer relationship management: identify preferences of different
customer groups{Home, 2 cars} => {Policy A}, {Home, Ann Arbor} => {Policy B}

- Medical Diagnosis: find associations in symptoms and observations to
predict diagnosis {Fever, lethargic, vomiting} => {Food Poisoning}
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Market Basket Analysis

Market-Basket transactions

T Example of Association Rules

Bread, Milk {Diaper} — {Beer},

Bread, Diaper, Beer, Eggs {Milk, Bread} — {Eggs,Coke},
Milk, Diaper, Beer, Coke {Beer, Bread} — {Muilk},
Bread, Milk, Diaper, Beer

Bread, Milk, Diaper, Coke Implication means co-occurrence,

Each row in this table corresponds to a transaction, which not causal |ty!
contains a unique identifier and a set of items bought by a

given customer. Retailers are interested in analyzing the data to

learn about the purchasing behavior of their customers.




Issues

- Discovering patterns from large transaction data:
computationally extensive

- Discovery of fake patterns




Definitions

- Itemset: | ={i,, i,, ..., i}
« The set of all items in the market basket data

| = {Bread, Milk, Diaper, Beer, Eggs, Coke}

- K-itemset: an itemset containing k items

TID

Items
Bread, Milk

Bread, Diaper, Beer, Eggs

Milk, Diaper, Beer, Coke

Bread, Milk, Diaper, Beer

Bread, Milk, Diaper, Coke

- Null/empty itemset: an itemset that does not contain any items

- Transaction set: T={t,, t,, ..., t\}

- Each transaction t; contains a subset of |




Definitions

- Support of an itemset X: number of transactions containing X

- o({Bread,Diapers})
3

- o({Diapers, Milk, Coke})
2

TID

Items
Bread, Milk

Bread, Diapers, Beer, Eggs

Milk, Diapers, Beer, Coke

Bread, Milk, Diapers, Beer

Bread, Milk, Diapers, Coke




Definitions

- Association Rule:
- Implication of the form X = Y, where X and Y are disjoint itemsets
- {Bread, Diapers} - {Milk}
- {Bread} - {Milk}

- Support of a rule:
- The fraction of transactions containing both X and Y

o(XuY)
N

sS(X >Y)=

- Confidence of a rule:

- The fraction transactions containing X that also contains Y o(XuY)
c(X »7)=
o (X)
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Example

Association Rule: {Bread, Diaper} — {Milk}

s({Bread, Diaper} —» {Milk}) =

c({Bread, Diaper} — {Milk}) =

o({Bread, Diaper, Milk})

N

o({Bread, Diaper, Milk})

Bread, Milk

Bread, Diapers, Beer, Eggs

Milk, Diapers, Beer, Coke

Bread, Milk, Diapers, Beer

o({Bread, Diaper})

Bread, Milk, Diapers, Coke




Interpretation

« Support:
- Low: items may occur together by chance

- Used to eliminate uninteresting rules
* Transaction set contains 1000 transaction.

e Asingle transaction contains the items {Band aids, TV}
* No other transactions contain either item

 What is the support for {TV} => {Band aids}?

 What is the confidence for {TV} => {Band aids}?
o({TV, Bandaids}) = # trans. containing both = 1

s({TV} => {Bandaids}) = o({TV, Bandaids}) / N = 1/1000 = 0.001
c({TV} =>{Bandaids}) = o({TV, Bandaids}) / c({TV}) =1/1 =1




Interpretation

- Confidence:

- Measures reliability of implication

- The higher the confidence, the more likely Y is present in transactions containing X
* Transaction set contains 1000 transaction.
e 200 transactions contain the items {Milk, Paper}

e 250 transactions contain {Milk} Co-occurrence /
e 800 transactions contain {Paper} Not causality
 What is the support for {Milk} => {Paper}? relationship

 What is the confidence for {Milk} => {Paper}?
o({Milk, Paper}) = # trans. containing both = 200

s({Milk} => {Paper}) = o({Milk, Paper}) / N =200/1000 = 0.2
c({Milk} => {Paper}) = c({Milk, Paper}) / o({Milk}) = 200/250 = 0.8




Association Rule Discovery Problem

- Given:
- a set of transactions T
 a minimum support minsup
- A minimum confidence minconf

- Find all association rules having:
- support >= minsup
- confidence >= minconf




Association Rule Discovery

- Brute Force Approach: find all possible rules then filter.

- 2-Step Approach: find frequent items then generate rules.




Brute Force Approach

- Compute support and confidence of every possible rule

- Select only rules satisfying minsup and minconf threshold

« Possible number of rules:

R=39-2#1+1 (d:items set size)
Exponential O(3¢)
Prohibitively expensive!

- Example:
-d=6 R=3°-27+1=602
- d=10 R=310-2114+1=57,002
- d=15 R=14,283,372




If a store has 1000 different items:

> R:= 3°d - 27 (d+1) + 1;

R=132207081948080663689045525975214436596542203275214816766492036822682'
£§50734670489954077831385060806196390977769687258235595005458210061891186!
534272525795367402762022519832080385658460208523949485542189913638858182
000085158151242228918655840564706565199178372826151276809162989184514543)
746640243175117323050698398769180942714083126679043875234727009443324274
072748463095841593799563260256679785505805331152530775858354670997698520!
7992693374081496689754702826924329094491519081250

If 1000 rules can be generated per second
> R/1000./3600/24/365;
67

4192259068 10~




Observation

- Support of a rule X — Y depends on support of itemset {X U Y}

o(XuY)

(X 7)==

- Six possible rules from itemset {Bread, Diaper, Milk}:
{Bread, Diaper}! — {Milk}, {Milk} — {Bread, Diaper}
{Bread, Milk} — {Diaper}, {Diaper! — {Bread, Milk}
{Diaper, Milk} — {Bread), {Bread} — {Diaper, Milk}
- If the itemset has low support:
- All six rules have low support
- Can be pruned




Better Approach

2-Step Approach: find frequent items then generate rules.

1. Frequent itemset generation
» Generate all itemsets satisfying minsup

2. Rule Generation:
e Extract rules satisfying minconf from frequent itemsets




5 choose 4: 5
d items: 29 itemsets

5 choose 5: 1 Total: 32 = 2AS Search space is exponentially large
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How to reduce computational complexity

- Reduce the number of candidate itemsets using the Apriori
principles.

- Reduce the number of comparison: instead of matching each
candidate itemset against every transaction, we can reduce the
number by using more advanced data structures.

- Reduce the number of transactions




Apriori Principle

Anti-monotone property:
The support of an itemset never exceeds the support for the subsets

i.e., support of an itemset <= support for its subsets




Apriori Principle

Anti-monotone property:
support of an itemset <=
support for its subsets

- If an itemset is frequent,
then all its subsets are

frequent

>

Frequent
ltemset




Apriori Principle

Infrequent
Itemset

Anti-monotone property:
support of an itemset <=
support for its subsets

- |If an itemset is
infrequent, then all its
supersets are infrequent

Pruned
Supersets




Apriori Algorithm

- C,: Candidate itemsets of size k (itemsets possibly frequent)
* F,: Frequent itemsets of size k

- Compute F;:
- A single pass over the transactions table to count support of individual items

- Iteratively, use F, , to compute C, and then F,
- Stop when F, is empty

- A pass over the transactions is needed to count the support of every C,




Example

1-ltemsets
ltem Count
Beer
Bread
Cola
Diapers

Minimum support count = 3

Candidate

Milk 2-ltemsets

ltemset Count
{Beer, Bread}
{Beer, Diapers}
{Beer, Milk}
{Bread, Diapers}

| {Bread, Milk}
Itemsets removed : :
because of low {Diapers, Milk}

support \ Candidate
3-ltemsets

ltemset
{Bread, Diapers, Milk}

Eggs




Candidate Set Generation

- Avoid generating too many unnecessary candidates
- Ensure the set is complete: no frequent itemset is left out
- Do not generate duplicate itemsets

{a, b, ¢, d} can be generated by merging:

= {a, b, c}and{d}

= {a,cland {b, d}
= {cltand{a, b, d}




F x F, Method

- Extend each itemset in F,_; by a frequent item in F,

Frequent
2-itemset

Use F,_, to compute C, ltemset
{Beer, Diapers}
{Bread, Diapers}
{Bread, Milk}

{Diapers, Milk} . , Candidate
Candidate Generation Pruning

Itemset
Beer, Diapers, Bread}
Beer, Diapers, Milk}

ltemset
{Bread, Diapers, Milk}

{

Frequent {
1-itemset {Bread, Diapers, Milk}

{

Bread, Milk, Beer}

Beer
Bread
Diapers
Milk




F.x F._, Method (A

- Merge two itemsetsin F,_, if t

Frequent
2-itemset

Itemse

{Beer, Diapers) .
{Bread, Diapers}
{
{

(Bread, Milk}
Diapers, Milk}

oriori Gen)

neir first k-2 items are identical

Candidate Candidate
Generation Pruning

— —

Frequent

(Bread, Diapers, Milk} J

Itemset | | ltemset
| {Bread, Diapers, Milk}

2-itemset

ltemset
Beer, Diapers}

1
{Bread, Diapers)
{
{

Bread, Milk}
Diapers, Milk}




Candidate Pruning

- Remove itemsets containing infrequent subsets:

Frequent
2-itemset

Itemset
{Beer, Bread} Iltemsets removed

ltemset {Beer, Diapers} because of low

{Beer, Diapers) {Beer, Milk} support
: {Bread, Diapers}
{Bread, Diapers) (Bread, Milk]

{Bread, Milk} {Diapers, Milk}

{Diapers, Milk} .
Candidate Generation / Candidate

Pruning

F... X F; Method: ltemset m

| . | emset
{ B ok } ——p | {Bread, Diapers, Milk)
Frequent rBeerDiapersik—
1-itemset {Bread, Diapers, Milk}
Item HBroad Mk Beoar!
Beer
Bread
Diapers
Milk




Support Counting

- Compare each transaction against every itemset: computationally
expensive!

TID Items

Bread, Milk

Bread, Diaper, Beer, Eggs
Milk, Diaper, Beer, Coke
Bread, Milk, Diaper, Beer
Bread, Milk, Diaper, Coke

Itemset
{Bread, Diapers, Milk)




Improving Efficiency

» Transaction Reduction:

e a transaction that does not contain any frequent k-itemset cannot
contain any frequent (k+1)-itemset

- Sampling: pick a random sample and find frequent itemsets on
sample. Trading accuracy for efficiency




Computational Complexity

- Support threshold: lower support implies:
- More frequent itemsets, more candidate itemsets

- Larger frequent itemsets (larger k)

« Number of items:
- More space needed to store support counts

 Increases the number of candidate itemsets

- Number of transactions:
- Increases the time needed for a pass of the data

- Transaction Width:
- Increases the maximum size of frequent itemsets




Rule Generation

2-Step Approach: find frequent items then generate rules.

v Frequent itemset generation
» Generate all itemsets satisfying minsup

-- Rule Generation:
e Extract rules satisfying minconf from frequent itemsets




Rule Generation

- Given the minimum confidence minconf , generating association rules by going
through all possible combinations of frequent item sets and pruning the rules
according to confidence criterion.

- Given a frequent k-itemset Z:
- There are 2%-2 possible association rules

e Ignoringd > ZandZ > I

- When considering rule , both X U Y and X are frequent
- Support is already computed

- All rules satisfy minsup
- Do not need to traverse transaction table

- Select only those satisfying minconf




Rule Generation

- Generate all nonempty subsets for each frequent itemset

- For every nonempty subset S of Itemset |, output of the rule:
-« S-->(I-5)

. If support_count (l) / support_count (S) > = minimum confidence threshold then rule
is a strong Association Rule.

Items Bought
minimum threshold support = 60% |

A, C
A Ch minimum threshold confidence = 80%

{A, B, C E}

{A, D}

[tem set sSupport Count | Support
{A, B, C} 3 60%

{A,B,C E}

{A,B,C,D,E}




Rule Generation

minimum threshold confidence = 80% Step 1:

Item set Support Count | Support  Generate all nonempty subsets for each frequent itemset

A, B, C} 3 60% o For Itemset - { A, B, C } , all non empty subsets are {A,B}, {B,C}, {A,C}, {A}, {B}, {C}

Step 2.1:

e For every nonempty subset S of Itemset I , output of the rule:
°oS->1-S5)
= {AB} > {C}
= {B.C} ->{A}
= {AC}>{C}
= {A} > {B.C}
= {B} >{AC}
= {C}->{AB}




Rule Generation

minimum threshold confidence = 80%

Item set Support Count | Support
A, B, C} 3 60%

Step 2.2: o If support_count (I) / support_count (S) > = minimum confidence threshold then rule is a strong Association Rule.
= {AB} > {C}, Confidence = 3/3 * 100 = 100% - Yes, it is a strong association rules
= {B,C} > {A}, Confidence = 3/3 * 100 = 100% - Yes, it is a strong association rules
» {A,C} > {C}, Confidence = 3/4 * 100 = 80% - Yes, it is a strong association rules
= {A} > {B,C}, Confidence = 3/5 * 100 = 60% - No, it is not a strong association rules
» {B} > {A,C}, Confidence = 3/3 * 100 = 100% - Yes, it is a strong association rules
= {C} > {A B}, Confidence = 3/4 * 100 = 80% - Yes, it is a strong association rules




Credit Card Promotion Database

e 10 samples

 Single itemsite can be twice as large than previous example

Single item sets at a 40% coverage threshold:

Magazine|Watch  [Life Ins |Credit
Promo |Promo [Promo |Card Ins.

Yes No No No

Yes Yes Yes No
No No No No B. Watch Promo=Yes

Yes Yes Yes C. Watch Promo=No
Yes INo Yes No D. Life Ins Promo=Yes
No No No No E. Life Ins Promo=No
Yes No Yes F. Credit Card Ins=No
No No No

G. Sex=Male

Yes No No No
Yes No H. Sex=Female

single item sets Number of items

A. Magazine Promo=Yes 7




Credit Card Promotion Database

Single item sets at a 40% coverage threshold:

| single item sets Number of items

|A. Magazine Promo=Yes 7
|B. Watch Promo=Yes

|C. Watch Promo=No

|D. Life Ins Promo=Yes

|E‘ Life Ins Promo=No

IF. Credit Card Ins=No

G. Sex=Male

|H. Sex=Female

Now begin pairing up
combinations with the same
minimal support threshold (40%)

== [Ep TN =-1(R=1 kel I}--]




Credit Card Promotion Database

| B | D | E | F |G
L - | |
L - |
| - L
| - |
| s | - |
| L4 | 4 |
L L 14|

=1 K] (R K R ==R IR =2k (L=

Resulting rules from two item sets. Consider rules in both directions:

1.(A—D)
( MagazinePromo=Yes )— ( LifeInsPromo=Yes ) at 5/7 confidence
2.(D—=A)
( LifeInsPromo=Yes ) — (MagazinePromo=Yes ) at 5/5 confidence
3. twenty more rules from the 10 two-item-sets (A then C, C then A, A then F, F then A, etc.)

Now apply minimum confidence threshold

If confidence threshold would be 80%, then the first rule ( A — D) is eliminated.
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