ASSOCIATION MINING II

Evaluation Metrics

• Which rules are interesting?

- Subjective measures:
 - Based on subjective arguments to decide if it reveals interesting information
 - {Butter} => {Bread}: Not interesting
 - {Diapers} => {Bread}: Interesting
- Objective measures:
 - based on statistics computation

Subjective Measures

- Subjective interestingness measures are based on user belief in the data. These measures find patterns interesting if
 - they are unexpected (contradicting user's belief)
 - offer strategic information on which user can act.

- Visualization: allows human beings to interact with the data mining system and interpret and verify rules
- Template-Based: allows users to constrain the type of patterns extracted
- Subjective interest measures: based on domain information such as concept hierarchy or profit margin

Objective Measures

• Support

• Support is an important measure because a rule that has very low support may occur simply by chance.

Confidence

• Confidence on the other hand measures the reliability of the inference made by the rule.

Objective Measures

- Limitation of Support:
 - some items appear infrequently in their normal settings compared to other items
 - For example: number of times a TV is purchased vs eggs are purchased

If we **increase** the support: patterns containing low occurring items (e.g., TV) will not be extracted If we **decrease** the support: many uninteresting patterns will be extracted

Objective Measures

- Limitation of Confidence:
 - is more subtle
 - Better demonstration through an example
- Consider rule: R = {Tea} => {Coffee}

	Coffee	Coffee	
Теа	150	50	200
−⊤Tea	650	150	800
	800	200	1000

Support(R): 15% Confidence(R): 75% *Tea drinkers tend to also drink coffee*

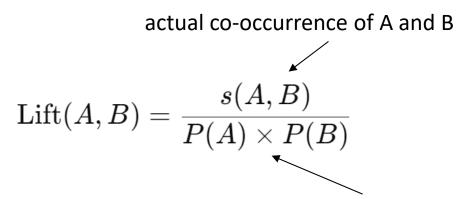
Confidence does not look at support of rule consequent (i.e., coffee) -> fake patterns

Support{Coffee} = 80% Probability of drinking coffee is 80% Probability of drinking coffee knowing that the person drinks tea is 75%

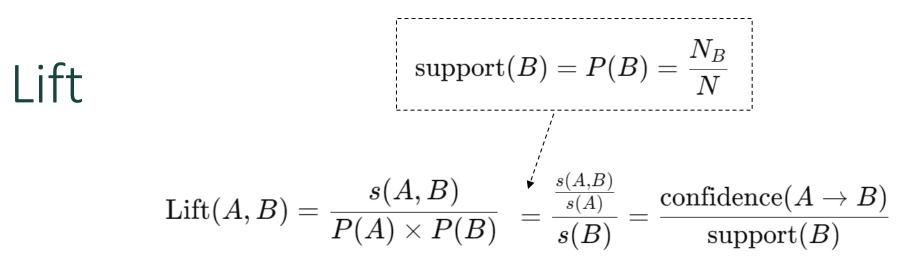
Drinking tea reduces the probability of drinking coffee

Lift

The lift, which we also call interest factor, measures the ratio of the deviation of s(A,B) from the support of A **and the support of B when they are independent**.



co-occurrence you would expect under independence



- If Lift < 1: the occurrence of A is negatively correlated with the occurrence of B
- If Lift > 1: A and B are positively correlated
- If Lift = 1: A and B are independent

Lift(Tea => Coffee) = conf(Tea => Coffee) /Support(Coffee) = 75%/80% = 0.937 => Slight negative correlation

Correlation Analysis $\phi = \frac{f_{11}f_{00} - f_{01}f_{10}}{\sqrt{f_{1+}f_{+1}f_{0+}f_{+0}}}$

- Correlation factor is in the range [-1, 1]
- ϕ = -1: Perfect negative correlation
- ϕ = +1: Perfect positive correlation
- ϕ = 0: No correlation

 $\phi = (150*150-650*50) / sqrt(200*800*800*200)$ = -0.0625

	Coffee	Coffee	
Теа	150	50	200
−⊤Tea	650	150	800
	800	200	1000

Correlation Analysis - Limitation

Consider text mining application

	р	р	
q	880	50	930
q	50	20	70
	930	70	1000

	r	r	
S	20	50	70
S	50	880	930
	70	930	1000

 $\phi(p, q) = \phi(r, s) = 0.232$

- The correlation coefficient puts equal importance to both co-presence and coabsence of items in a transaction
- Suitable for analyzing symmetric binary variables

Correlation Analysis - Limitation

 It does not remain invariant when there are proportional change to the sample size



	3.6	
#	Measure	Formula
1	ϕ -coefficient	$\frac{P(A,B)-P(A)P(B)}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}$
2	Goodman-Kruskal's (λ)	$\frac{\sum_{j \max_{k} P(A_{j}, B_{k}) + \sum_{k} \max_{j} P(A_{j}, B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}{2 - \max_{i} P(A_{i}) - \max_{k} P(B_{k})}$
3	Odds ratio (α)	$\frac{P(A,B)P(\overline{A},\overline{B})}{P(A,\overline{B})P(\overline{A},B)}$
4	Yule's Q	$\frac{P(\overline{A},\overline{B})P(\overline{AB}) - P(\overline{A},\overline{B})P(\overline{A},B)}{P(\overline{A},\overline{B})P(\overline{AB}) + P(\overline{A},\overline{B})P(\overline{A},B)} = \frac{\alpha - 1}{\alpha + 1}$
5	Yule's Y	$\frac{\sqrt{P(A,B)P(\overline{AB})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{AB})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}} = \frac{\sqrt{\alpha}-1}{\sqrt{\alpha}+1}$
6	Kappa (κ)	$\frac{\sqrt{P(A,B)P(AB)} + \sqrt{P(A,B)P(A,B)} - \sqrt{D+1}}{\frac{P(A,B) + P(\overline{A},\overline{B}) - P(A)P(B) - P(\overline{A})P(\overline{B})}{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}}$ $\frac{\sum_{i} \sum_{j} P(A_{i},B_{j}) \log \frac{P(A_{i},B_{j})}{P(A_{i})P(B_{j})}}{\frac{P(A_{i},B_{j})}{P(A_{i})P(B_{j})}}$
7	Mutual Information (M)	$\frac{\sum_{i}\sum_{j}P(A_{i},B_{j})\log\frac{P(A_{i})P(B_{j})}{P(A_{i})P(B_{j})}}{\min(-\sum_{i}P(A_{i})\log P(A_{i}),-\sum_{j}P(B_{j})\log P(B_{j}))}$
8	J-Measure (J)	$\max\Big(P(A,B)\log(\tfrac{P(B A)}{P(B)})+P(A\overline{B})\log(\tfrac{P(\overline{B} A)}{P(\overline{B})}),$
		$P(A,B)\log(rac{P(A B)}{P(A)}) + P(\overline{A}B)\log(rac{P(\overline{A} B)}{P(\overline{A})})\Big)$
9	Gini index (G)	$\max\left(P(A)[P(B A)^{2}+P(\overline{B} A)^{2}]+P(\overline{A})[P(B \overline{A})^{2}+P(\overline{B} \overline{A})^{2}]\right)$
		$-P(B)^2 - P(\overline{B})^2,$
		$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}]$
		$-P(A)^2 - P(\overline{A})^2$
10	Support (s)	P(A,B)
11	Confidence (c)	$\max(P(B A), P(A B))$
12	Laplace (L)	$\max\left(\frac{NP(A,B)+1}{NP(A)+2},\frac{NP(A,B)+1}{NP(B)+2}\right)$
13	Conviction (V)	$\max\left(rac{P(A)P(\overline{B})}{P(A\overline{B})},rac{P(B)P(\overline{A})}{P(B\overline{A})} ight)$
14	Interest (I)	$\frac{P(A,B)}{P(A)P(B)}$
15	cosine (IS)	$\frac{P(A,B)}{P(A)P(B)}$ $\frac{P(A,B)}{\sqrt{P(A)P(B)}}$
16	Piatetsky-Shapiro's (PS)	P(A,B) - P(A)P(B)
17	Certainty factor (F)	$\max\left(rac{P(B A)-P(B)}{1-P(B)},rac{P(A B)-P(A)}{1-P(A)} ight)$
18	Added Value (AV)	$\max(P(B A) - P(B), P(A B) - P(A))$
19	Collective strength (S)	$\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(\overline{B})} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}$ $\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$
20	Jaccard (ζ)	$\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$
21	Klosgen (K)	$\sqrt{P(A,B)}\max(P(B A)-P(B),P(A B)-P(A))$

- The best metric to use for a given application domain is usually unknown
- There are several properties that need to be considered when we analyze a measure.
- One important property is the sensitivity of a measure to row and column scaling operations

Property under Row/Column Scaling

Grade-Gender Example (Mosteller, 1968):

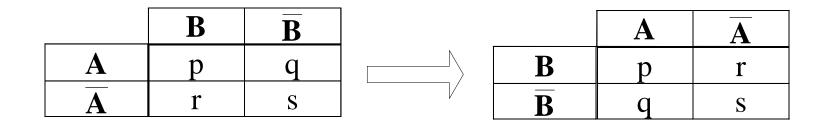
the relationship between the gender of a student and the grade obtained for a particular course

		Male	Female				Male	Female	
	High	2	3	5		High	4	30	34
	Low	1	4	5		Low	2	40	42
		3	7	10			6	70	76
•					-				
							2x	10x	

Underlying association should be independent of the relative number of male and female students in the samples

Some intuitively appealing measures can be sensitive to scaling. Some are not, such as the odds ratio.

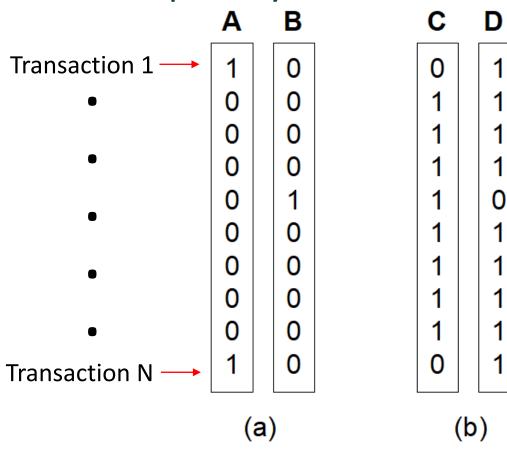
Property under Variable Permutation



Does $M(A \Rightarrow B) = M(B \Rightarrow A)$?

Symmetric measures: support, lift, collective strength, cosine, Jaccard, ... Asymmetric measures: confidence, conviction, Laplace, J-measure, ...

Property under Inversion Operation



flipping the 0's (absence) to become 1's (presence)

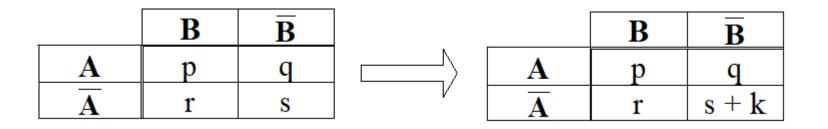
If invariant under inversion operation => Not suitable for asymmetric data

In other words: distinguish between symmetric binary measures, which are invariant under the inversion operation, from asymmetric binary

- have very little association between them.

both C and D co-occur together more frequently, their corr coefficients are still the same as before measures.

Property under Null Addition



What is the effect of adding more records that do not contain either property?

Invariant measures: cosine, Jaccard, ...

Non-invariant measures: interest factor, correlation, odds ratio, ...

This property is useful for domains having sparse data sets, where co-presence of items is more important than co-absence

Quantitative Rules

- General association rules where both the left-hand and the right-hand sides of the rule should be **categorical** (nominal or discrete) attributes
- Quantitative rules: at least one attribute (left or right) must involve a numerical attribute.

Categorical Attributes

Categorical attributes are transformed into items

Gender	Level of Education	State	Chat Online	Shop Online
Female	Graduate	Illinois	Yes	No
Male	College	California	Yes	Yes
Male	High School	Michigan	No	Yes

Gender	Lvl-Educ-Graduate	Lvl-Educ- HighSchool	LvI-Educ-College	 Shop Online- yes	Shop-online- no
Female	1	0	0	0	1
Male	0	0	1	1	0
Male	0	1	0	1	

Issues

•Some values may not be frequent enough:

- Lowering support does not help
- •Group related values

Instead of creating 50 columns, one for each for state Create columns for: Midwest, pacific Northwest, Southwest, East Coast •Some values are very frequent to an extent they don't bring new information but result in a large number of rules

Remove these attributes

Own-Computer = yes: is present 85% of the time.

•To avoid generating too many candidate sets: use only one attribute from each group generated from the same original attribute:

Ignore itemsets such as {gender-female, gender-male}

Continuous Attributes

• Discretization

Gender	 Age	Annual	No of hours spent	No of email	Privacy
		Income	online per week	accounts	$\operatorname{Concern}$
Female	 26	90K	20	4	Yes
Male	 51	135K	10	2	No
Male	 29	80K	10	3	Yes
Female	 45	120K	15	3	Yes
Female	 31	95K	20	5	Yes
Male	 25	55K	25	5	Yes
Male	 37	100K	10	1	No
Male	 41	65K	8	2	No
Female	 26	85K	12	1	No

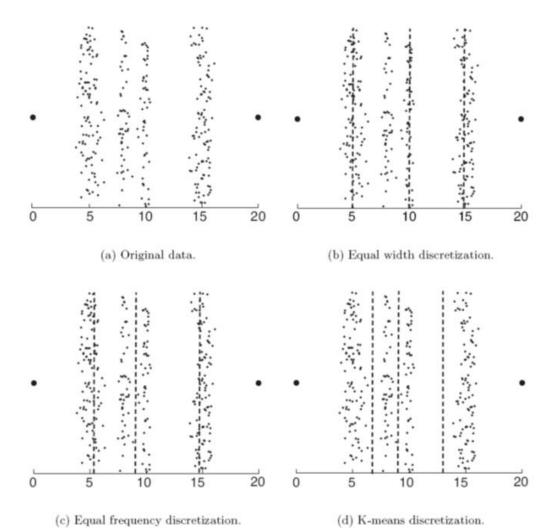
Male	Female	 Age	Age	Age	 Privacy	Privacy
		 < 13	$\in [13, 21)$	$\in [21, 30)$	 = Yes	= No
0	1	 0	0	1	 1	0
1	0	 0	0	0	 0	1
1	0	 0	0	1	 1	0
0	1	 0	0	0	 1	0
0	1	 0	0	0	 1	0
1	0	 0	0	1	 1	0
1	0	 0	0	0	 0	1
1	0	 0	0	0	 0	1
0	1	 0	0	1	 0	1

Continuous Attributes *Age => Age < 13, Age in [13, 21), Age in [21, 30), ...*

- Interval width: affects support and confidence of generated rules
- If interval too wide: may lose patterns because of lack of confidence
- If interval too narrow: may lose patterns because of lack of support supp(age in [21..30]) = 25%
 supp(age in [31..40]) = 30%
 supp(age in [21..40]) = 55%

How to determine interval width?

- Equal width intervals
- Equal depth intervals
- Clustering



Example – Customer profiles

People							
RecordID	Age	Married	NumCars				
100	23	No	1				
200	25	Yes	1				
300	29	No	0				
400	34	Yes	2				
500	38	Yes	2				

 $(\min support = 40\%, \min support = 50\%)$

Rules (Sample)	Support	Confidence
$\langle \text{Age: } 3039 \rangle \text{ and } \langle \text{Married: Yes} \rangle \Rightarrow \langle \text{NumCars: } 2 \rangle$	40%	100%
$\langle NumCars: 01 \rangle \Rightarrow \langle Married: No \rangle$	40%	66.6%

Example – Congressional voting records

Attribute	Values
Party affiliation	Democrat/Republican
Handicapped Infants	Yes/No
Water project cost sharing	Yes/No
Budget resolution	Yes/No
Physician fee freeze	Yes/No
Immigration	Yes/No
Aid to Nicaragua	Yes/No
Education Spending	Yes/No

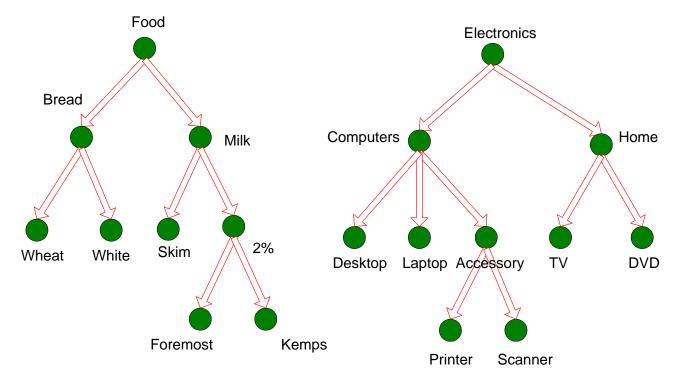
Example – Congressional voting records

Association Rule	Confidence
{Budget resolution = no, MX-missile = no, aid to El Salvador = yes} => {Republican}	91%
{Budget resolution = yes, MX-missile = yes, aid to El Salvador = no} => {Democrat}	97.5%
{crime=yes, right to sue = yes, physician fee freeze= yes} => {Republican}	93.5%
<pre>{crime=no, right to sue = no, physician fee freeze= no} => {Democrat}</pre>	100%

Concept Hierarchy

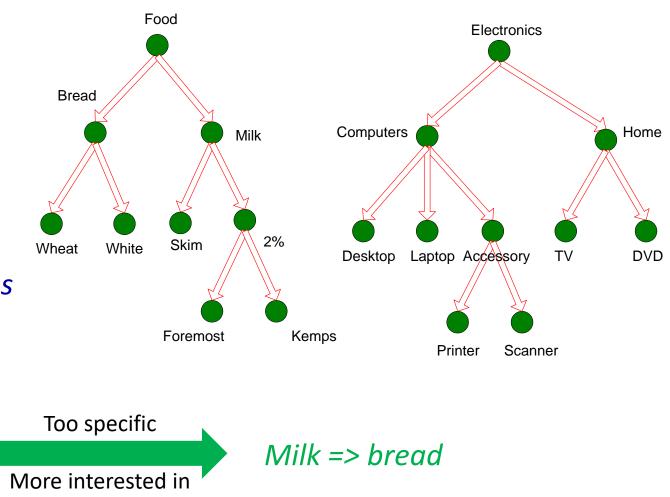
--Multi-level Association Rules

- Concept hierarchies are based on domain knowledge
 - Milk, eggs, cheese: food concept
 - Video games, tv, dvds: electronic concepts



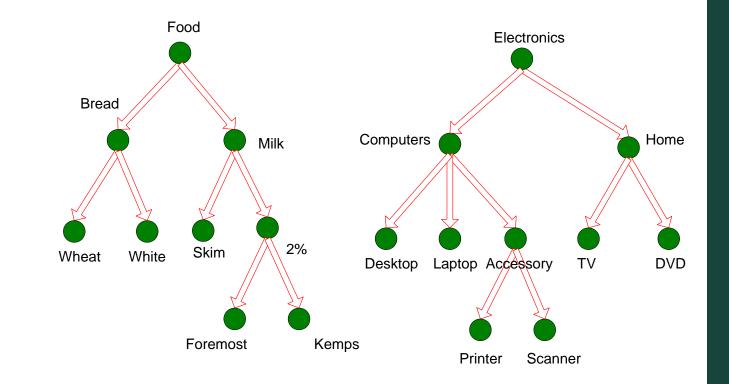
Concept Hierarchy

- Items in lower level of the tree may have low support, grouping increases their support
 Example: sale of scanners may be low but sale of accessories is high
- Consider lower level items only: rules tend to be overly specific Example:
 - skim milk => wheat bread 2% milk => wheat bread 2% milk => white bread



Concept Hierarchy

- Consider higher level items only: rules tend to be too general Example:
 - Electronics => Food
 - Overgeneralizing. More interested in
 - *DVD => 2% Milk*

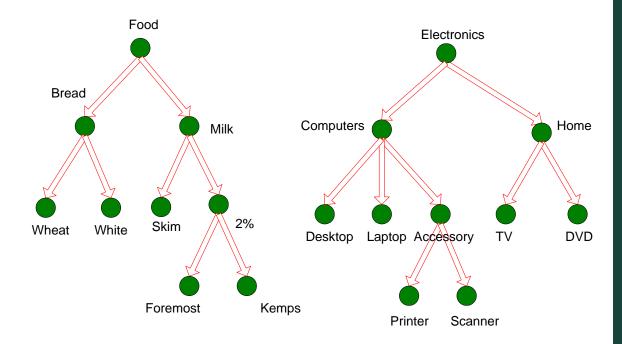


Handling Concept Hierarchy --Multi-level Association Rules

Approach 1: Extend lower level items by parents in hierarchy

{2% milk, wheat bread} becomes: {2% milk, milk, wheat bread, bread, Food}

{Foremost milk, wheat bread} becomes: {Foremost milk, 2% milk, milk, wheat bread, bread, Food}



Handling Concept Hierarchy

--Multi-level Association Rules

- Min support choice: Items in higher levels have higher support.
 - If threshold too high => generate rules involving higher level items only
 - *If support too low => generate too many patterns*
- Concept hierarchy increases the computation time:
 - Increasing number of items
 - Increasing transactions width
- Concept hierarchy may produce redundant rules and itemsets Since hierarchy is k

{Skim milk, milk, food}

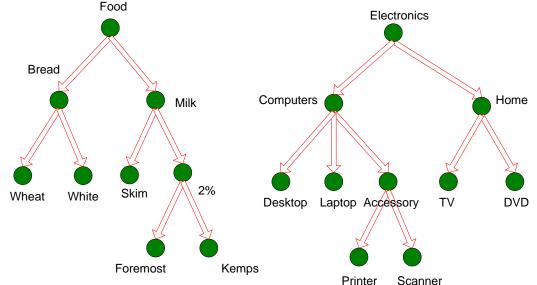
Since hierarchy is known => eliminate redundant itemsets during frequent itemset generation 30

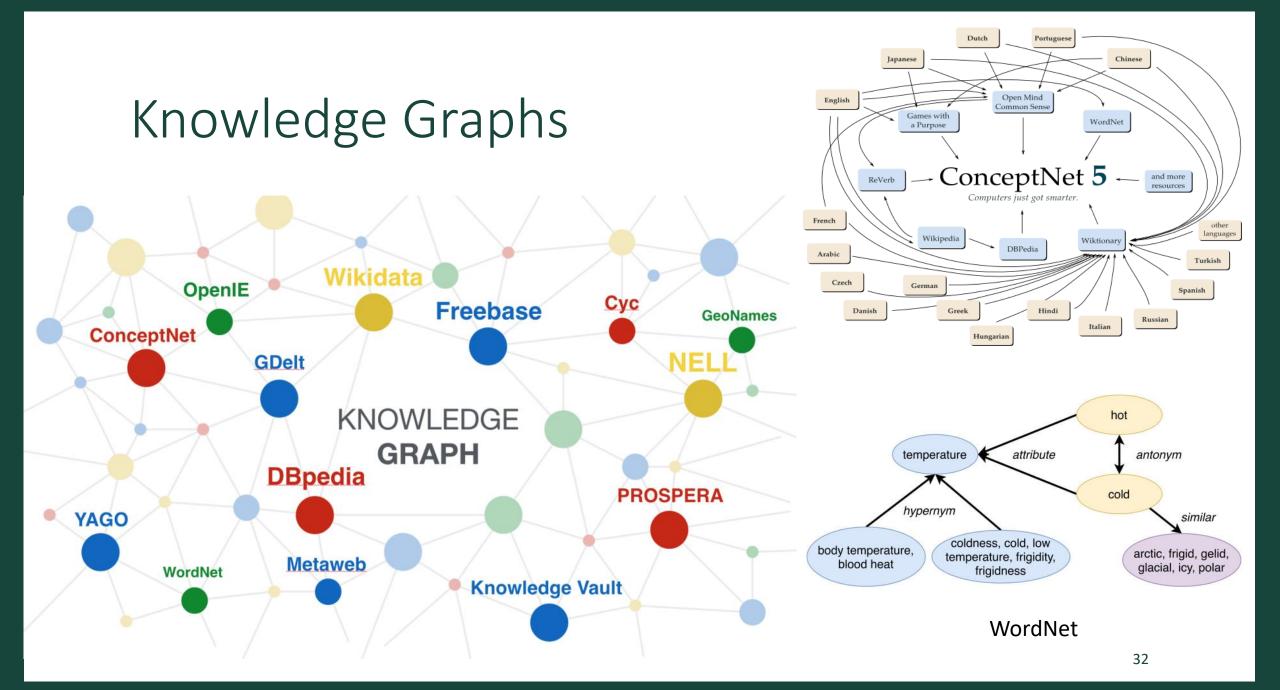
Handling Concept Hierarchy --Multi-level Association Rules

Approach 2:

Generate frequent items from higher levels first Generate frequent items from the next level, and so on...

Increases Input/Output since more passes are needed May miss patterns across different levels





Applications

- Market basket analysis
- Medical diagnosis
- Protein sequences
- Census data: education, health, transport, funds, public businesses
- CRM of credit card business