
SEQUENCE AND GRAPH 
MINING



SEQUENCE MINING



Motivation

• In many data mining tasks, the order and timing of events 
contains important information.

• Frequent itemsets only capture the co-occurrences. 
• No order between the items, order of transactions not considered 
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Motivation

• An online shopping company would like to extract patterns about 
web pages visited in each session as an attempt to predict 
customer behavior

• Data collected:

<{Homepage} {Electronics} {Cameras and Camcorders} {Digital cameras} 
{Shopping Cart} {Return to Shopping}> 

<{Homepage} {Books} {Programming Algorithms} {Modeling and 
Simulation} > 
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Temporal information is not captured by 
<session-Id, items> model 



Sequential Pattern Mining
• Goal: discover sequential patterns in a sequence data set

• Sequence: 
• An ordered list of elements 

• Each element is a collection of one or more events

• Length of a sequence: number of elements in it

• k-sequence: contains k events 
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s = <e1 e2 e3 … en>

ej = {i1, i2, i3, …, ik}

s = <{1, 2} {3, 4} {5} {6, 7, 8}>

s is an 8-sequence of length 4

i1
i2

i1
i3

i2 i2
i3
i4



Sequence Data Example
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Sort all events associated with 
a given object in increasing 
order of their timestamp

<{2, 3, 5} {6, 1} {1}>
<{4, 5, 6} {2} {7, 8, 1, 2} {1, 6}>
<{1, 8, 7}>



Subsequence
• A sequence t is a subsequence of a sequence s if each ordered 

element in t is a subset of an ordered element of s

• t is a subsequence of s if there exists integers 1  j1  j2  …  jm  
n such that t1  sj1, t2  sj2, …, tm  sjm
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s = <s1  s2  s3 …   …   …    sn>

t = <t1  t2   t3 …  tm>

  

Sequence s Sequence t Is t a subsequence of s?

<{2, 4} {3, 5, 6} {8}> <{2} {3, 6} {8}>

<{2, 4} {3, 5, 6} {8}> <{2} {8}>

<{1, 2} {3, 4}> <{1} {2}>

{2, 4} {3, 5, 6} {8} Yes

Yes

No



Pattern Discovery
• Task: Given a sequence data set D and a user-specified minimum 

support minsup, the goal is to find all sequences with support >= 
minsup
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Pattern Discovery
• Computationally challenging because there are exponentially many 

subsequences of a given sequence

• Brute force:

• Number of candidate subsequences is substantially larger than 
number of candidate itemsets
• An item can appear at most once in an itemset but an event can appear 

multiple times in a sequence

• Order matters in sequences but not in itemsets
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1-sequences <i1> <i2> … <in>

2-sequences <{i1, i2}>  <{i1, i3}> …   <{in-1, in}> …
<{i1}, {i2}>  <{i1}, {i3}> …   <{in-1}, {in}>

3-sequences <{i1, i2, i3}>  <{i1, i2, i4}> …   <{i1, i2}, {i1} … >
<{i1}, {i1, i2}> … <{i1}, {i1}, {i3}> … 



Apriori Principle
• Any data sequence that contains a k-sequence also contains all its (k-

1)-subsequences => Apriori principle holds

• Apriori-like algorithm for generating frequent data sequences
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1. Generate frequent 1-sequences
2. Repeat:

1. Merge pairs of frequent (k-1)-sequences to generate candidate k-
sequences 

2. Prune candidates whose (k-1)-subsequences are infrequent
3. Make a pass over the data set to count the supports of the 

remaining candidates
4. Construct Fk as subset of sequences in step 3 satisfying min support



Candidate Set Generation

Merge two k-sequences s1 and s2 if the subsequences obtained by:
dropping the first event of s1

dropping the last event of s2

are identical
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s1: <{1} {2 3} {4}> drop first event: <{2 3} {4}> 
s2: <{2 3} {4 5}> drop last event: <{2 3} {4}>

s1 and s2 can be merged to generate a candidate 5-sequence



Candidate Set Generation

• If the last element of s2 has more than one event, append the last 
event from the last element of s2 to the last element of s1

• If the last element of s2 has only one event, append the last element 
of s2 to the end of s1 as a separate element
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s1: <{1} {2 3} {4}> 
s2: <{2 3} {4 5}> 
Result: <{1} {2 3} {4 5}>

s1: <{1} {2 3} {4}> 
s2: <{2 3} {4} {5}> 
Result: <{1} {2 3} {4} {5}>



Candidate Pruning and Support Count
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Candidate Pruning and Support Count
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Prune a candidate k-sequence if at least one of its (k-1)-sequences is not frequent

(1)  (2)  (3)  (4)
(1)  (2)  (3)  (4)
(1)  (2)  (3)  (4)
(1)  (2)  (3)  (4)

X
X

X
X

Contains subset that is not 
frequent so the candidate 
sequence is not frequent 
and is hence pruned



Candidate Pruning and Support Count
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Prune a candidate k-sequence if at least one its (k-1)-sequences is not frequent

(1)  (2, 5)  (3)
(1)  (2, 5)  (3)
(1)  (2, 5)  (3)
(1)  (2, 5)  (3)

X
X

X
X

All 3-subsequences are 
frequent so keep sequence 
in the candidate set



Time constraints
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• In some applications, relative timing of the transactions is crucial to 
define the pattern 

• Credit card fraud: 
The fraudulent user would do the purchases in short time interval to make 
maximum use of the card before it is closed.

• We impose some timing constraints to mine such patterns. Some of the 
timing constraints that can be imposed on a pattern.

• Approach: modify candidate pruning to directly prune candidates that 
violate time constraints



Time constraints
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window size [l, u] 17

l(sj+1) – u(sj) > mingapu(sj+1) – l(sj) <= maxgap

u(sn) – l(s1) <= maxspan
u(sn) l(s1) 

Each sequential pattern is associated with a time window [l,u]. L is the earliest occurrence of 
an event. U is the latest occurrence of an event.



Time constraints
• We consider three kinds of constraints:
• max-span constraint (ms): maximum allowed time between the latest 

and the earliest occurrence of events in the entire sequence.

• max-gap constraint (xg): maximum length of a gap between two 
consecutive element. 

• min-gap constraint (ng): minimum length of a gap between two 
consecutive element. 



Time constraints – Example 1

• Each itemset is tagged by the time of purchase:

• Constraints: maxgap = 3 mingap = 1 maxspan = 3

• Consider data sequence S and sequential pattern T:
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T: <{Eggs} {Cheese}>

S: <{Juice}1 {Eggs, Chips}2 {Chips}3 {Coke}4 {Cheese, Bread}5  {Water}6>

Gap = 5 – 2 = 3 Span = 5 – 2 = 3
So: 
Gap <= maxgap
Gap > mingap
Span  <= maxspan

All three constraints 
are satisfied



Time constraints – Example 2

• Each itemset is tagged by the time of purchase:

• Constraints: maxgap = 3 mingap = 1 maxspan = 3

• Consider data sequence S and sequential pattern T:
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T: <{Juice}{Cheese,Bread}>

S: <{Juice}1 {Eggs, Chips}2 {Chips}3 {Coke}4 {Cheese, Bread}5  {Water}6>

Gap = 5 – 1 = 4 Span = 5 – 1 = 4
So: 
Gap <= maxgap?  FALSE
Gap > mingap?  TRUE
Span  <= maxspan? FALSE



Time constraints – Example 3

• Each itemset is tagged by the time of purchase:

• Constraints: maxgap = 3 mingap = 1 maxspan = 3

• Consider data sequence S and sequential pattern T:

T: <{Juice} {Eggs} {Water}>

S: <{Juice}1 {Eggs, Chips}2 {Chips}3 {Coke}4 {Cheese, Bread}5  {Water}6>

Gap = 2 – 1 = 1
Mingap not satisfied
Maxgap satisfied

Gap = 6 – 2 = 4
Mingap satisfied
Maxgap not satisfied

Span = 6 – 1 = 5
Maxspan not satisified

Mingap and maxgap are not 
satisfied by every pair of 
consecutive elements. So they are 
not satisfied by the pattern



SUBGRAPHMINING
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Subgraph patterns

• Association analysis in graph data
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Application Graphs Vertices Edges

Web mining Web browsing history Web pages Hyperlink between pages

Computational 
Chemistry

Structure of chemical 
compounds

Atoms or ions Bond between atoms or 
ions

Network Computing Computer networks Computers and 
Servers

Interconnection between 
machines

Semantic Web Collection of XML 
documents

XML Elements Parent-child relationship

Bioinformatics Protein structures Amino acids Contact residue



Subgraph patterns - Example
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Databases

Homepage

Research

Artificial

Intelligence

Data Mining



Definitions
• A graph G = (V, E) is composed of:
• A set of vertices (or nodes) V

• A set of edges E

• A label for each edge e, l(e), if the graph is 
labeled

• Subgraph: a graph G’ =(V’, E’) is a subgraph of 
another graph G = (V, E) if:
• V’ is a subset of V

• E’ is a subset of E
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Definitions

• Connected graph: if there is a path between every pair of vertices
• “Fully connected”

26Connected Disconnected Disconnected



Definitions
• Undirected graph: if it contains undirected 

edges: (vi, vj) is the same as (vj, vi)

27Undirected

Databases

Homepage

Research

Artificial

Intelligence

Data Mining

Directed



Support

• Given a collection of graphs Cg, the support for subgraph g is the 
fraction of all graphs in Cg that contain g as its subgraph
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G1, G2, G3

G1, G3



Mining Frequent Subgraphs
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Approach 1
• Transform graphs and subgraphs into transaction format
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- Each combination of vertex label – edge label – 
vertex label is defined as an item



Approach 1
• Transform graphs and subgraphs into transaction format
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(a,b,p) (a,b,q) (a,b,r) (b,c,p) (b,c,q) (b,c,r) … (d,e,r)

G1 1 0 0 0 0 1 … 0

G2 1 0 0 0 0 0 … 0

G3 0 0 1 1 0 0 … 0

G3 … … … … … … … …

The width of the transaction?

The number of edges in the graph



Approach 1
• Transform graphs and subgraphs into transaction format
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Valid transformation only if every edge in the graph has 
a unique combination of label and vertices

one-to-one mapping

Problem: Multiple edges will be mapped into one 
item if they have the same label combination 



Approach 2 – Apriori like
• The apriori algorithm still holds because a k-graph is frequent only if all of its (k-

1) graphs are frequent.
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What is a k-graph? k vertices or k edges

Vertex growing Edge growing

• You start by a small size graph and generate candidates by adding a vertex/edge. 
• Candidate generation in graphs is complex



Approach 2 – Apriori like
Candidate Generation: merge pairs of (k-1)-subgraphs to obtain candidate k-
subgraph

Candidate Pruning: discard all candidate k-subgraphs contains infrequent (k-1)-
subgraphs

Support Counting: count number of subgraphs containing each candidate

Candidate Elimination: discard all candidates not satisfying minsupport
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Approach 2 – Apriori like
- Candidate Generation:

- These candidates are generated by joining two 
similar but slightly different frequent subgraphs.

- A pair of frequent (k-1)-subgraphs are 
merged to form a candidate k-subgraph, 
if they share a common (k-2)-subgraph 
(i.e., core). 

- Vertex based generation: Size (# vertices)

- Edge based generation: Size (# edges) 



Vertex Growing (AGM approach)
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• In the vertex growing approach, increases the substructure by one vertex at each 
step. 

• At each step we will merge two similar but slightly different subgraphs that differs by 
one vertices. 

• The new candidate will have the core structure and the additional two vertices.



Vertex Growing (AGM approach)
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Adjacency matrix:
-Rows and columns 
correspond to nodes; 

- non-zero cells along a 
row (column) 
correspond to 
neighbors 

- Cells correspond to 
edges 

- cell contains edge 
label (or zero if no 
edge) .



Vertex Growing (AGM approach)
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-Vertex growing takes two 
adjacency matrices that differ in 
the last row, and creates an 
augmented matrix by adding the 
last row and last column of the 
second matrix to the first matrix.
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