
SEQUENCE AND GRAPH
MINING

SEQUENCE MINING

Motivation

• In many data mining tasks, the order and timing of events
contains important information.

• Frequent itemsets only capture the co-occurrences.
• No order between the items, order of transactions not considered

3

Motivation

• An online shopping company would like to extract patterns about
web pages visited in each session as an attempt to predict
customer behavior

• Data collected:

<{Homepage} {Electronics} {Cameras and Camcorders} {Digital cameras}
{Shopping Cart} {Return to Shopping}>

<{Homepage} {Books} {Programming Algorithms} {Modeling and
Simulation} >

4

Temporal information is not captured by
<session-Id, items> model

Sequential Pattern Mining
• Goal: discover sequential patterns in a sequence data set

• Sequence:
• An ordered list of elements

• Each element is a collection of one or more events

• Length of a sequence: number of elements in it

• k-sequence: contains k events

5

s = <e1 e2 e3 … en>

ej = {i1, i2, i3, …, ik}

s = <{1, 2} {3, 4} {5} {6, 7, 8}>

s is an 8-sequence of length 4

i1
i2

i1
i3

i2 i2
i3
i4

Sequence Data Example

6

Sort all events associated with
a given object in increasing
order of their timestamp

<{2, 3, 5} {6, 1} {1}>
<{4, 5, 6} {2} {7, 8, 1, 2} {1, 6}>
<{1, 8, 7}>

Subsequence
• A sequence t is a subsequence of a sequence s if each ordered

element in t is a subset of an ordered element of s

• t is a subsequence of s if there exists integers 1  j1  j2  …  jm 
n such that t1  sj1, t2  sj2, …, tm  sjm

7

s = <s1 s2 s3 … … … sn>

t = <t1 t2 t3 … tm>

  

Sequence s Sequence t Is t a subsequence of s?

<{2, 4} {3, 5, 6} {8}> <{2} {3, 6} {8}>

<{2, 4} {3, 5, 6} {8}> <{2} {8}>

<{1, 2} {3, 4}> <{1} {2}>

{2, 4} {3, 5, 6} {8} Yes

Yes

No

Pattern Discovery
• Task: Given a sequence data set D and a user-specified minimum

support minsup, the goal is to find all sequences with support >=
minsup

8

Pattern Discovery
• Computationally challenging because there are exponentially many

subsequences of a given sequence

• Brute force:

• Number of candidate subsequences is substantially larger than
number of candidate itemsets
• An item can appear at most once in an itemset but an event can appear

multiple times in a sequence

• Order matters in sequences but not in itemsets
9

1-sequences <i1> <i2> … <in>

2-sequences <{i1, i2}> <{i1, i3}> … <{in-1, in}> …
<{i1}, {i2}> <{i1}, {i3}> … <{in-1}, {in}>

3-sequences <{i1, i2, i3}> <{i1, i2, i4}> … <{i1, i2}, {i1} … >
<{i1}, {i1, i2}> … <{i1}, {i1}, {i3}> …

Apriori Principle
• Any data sequence that contains a k-sequence also contains all its (k-

1)-subsequences => Apriori principle holds

• Apriori-like algorithm for generating frequent data sequences

10

1. Generate frequent 1-sequences
2. Repeat:

1. Merge pairs of frequent (k-1)-sequences to generate candidate k-
sequences

2. Prune candidates whose (k-1)-subsequences are infrequent
3. Make a pass over the data set to count the supports of the

remaining candidates
4. Construct Fk as subset of sequences in step 3 satisfying min support

Candidate Set Generation

Merge two k-sequences s1 and s2 if the subsequences obtained by:
dropping the first event of s1

dropping the last event of s2

are identical

11

s1: <{1} {2 3} {4}> drop first event: <{2 3} {4}>
s2: <{2 3} {4 5}> drop last event: <{2 3} {4}>

s1 and s2 can be merged to generate a candidate 5-sequence

Candidate Set Generation

• If the last element of s2 has more than one event, append the last
event from the last element of s2 to the last element of s1

• If the last element of s2 has only one event, append the last element
of s2 to the end of s1 as a separate element

12

s1: <{1} {2 3} {4}>
s2: <{2 3} {4 5}>
Result: <{1} {2 3} {4 5}>

s1: <{1} {2 3} {4}>
s2: <{2 3} {4} {5}>
Result: <{1} {2 3} {4} {5}>

Candidate Pruning and Support Count

13

Candidate Pruning and Support Count

14

Prune a candidate k-sequence if at least one of its (k-1)-sequences is not frequent

(1) (2) (3) (4)
(1) (2) (3) (4)
(1) (2) (3) (4)
(1) (2) (3) (4)

X
X

X
X

Contains subset that is not
frequent so the candidate
sequence is not frequent
and is hence pruned

Candidate Pruning and Support Count

15

Prune a candidate k-sequence if at least one its (k-1)-sequences is not frequent

(1) (2, 5) (3)
(1) (2, 5) (3)
(1) (2, 5) (3)
(1) (2, 5) (3)

X
X

X
X

All 3-subsequences are
frequent so keep sequence
in the candidate set

Time constraints

16

• In some applications, relative timing of the transactions is crucial to
define the pattern

• Credit card fraud:
The fraudulent user would do the purchases in short time interval to make
maximum use of the card before it is closed.

• We impose some timing constraints to mine such patterns. Some of the
timing constraints that can be imposed on a pattern.

• Approach: modify candidate pruning to directly prune candidates that
violate time constraints

Time constraints

17

window size [l, u] 17

l(sj+1) – u(sj) > mingapu(sj+1) – l(sj) <= maxgap

u(sn) – l(s1) <= maxspan
u(sn) l(s1)

Each sequential pattern is associated with a time window [l,u]. L is the earliest occurrence of
an event. U is the latest occurrence of an event.

Time constraints
• We consider three kinds of constraints:
• max-span constraint (ms): maximum allowed time between the latest

and the earliest occurrence of events in the entire sequence.

• max-gap constraint (xg): maximum length of a gap between two
consecutive element.

• min-gap constraint (ng): minimum length of a gap between two
consecutive element.

Time constraints – Example 1

• Each itemset is tagged by the time of purchase:

• Constraints: maxgap = 3 mingap = 1 maxspan = 3

• Consider data sequence S and sequential pattern T:

19

T: <{Eggs} {Cheese}>

S: <{Juice}1 {Eggs, Chips}2 {Chips}3 {Coke}4 {Cheese, Bread}5 {Water}6>

Gap = 5 – 2 = 3 Span = 5 – 2 = 3
So:
Gap <= maxgap
Gap > mingap
Span <= maxspan

All three constraints
are satisfied

Time constraints – Example 2

• Each itemset is tagged by the time of purchase:

• Constraints: maxgap = 3 mingap = 1 maxspan = 3

• Consider data sequence S and sequential pattern T:

20

T: <{Juice}{Cheese,Bread}>

S: <{Juice}1 {Eggs, Chips}2 {Chips}3 {Coke}4 {Cheese, Bread}5 {Water}6>

Gap = 5 – 1 = 4 Span = 5 – 1 = 4
So:
Gap <= maxgap? FALSE
Gap > mingap? TRUE
Span <= maxspan? FALSE

Time constraints – Example 3

• Each itemset is tagged by the time of purchase:

• Constraints: maxgap = 3 mingap = 1 maxspan = 3

• Consider data sequence S and sequential pattern T:

T: <{Juice} {Eggs} {Water}>

S: <{Juice}1 {Eggs, Chips}2 {Chips}3 {Coke}4 {Cheese, Bread}5 {Water}6>

Gap = 2 – 1 = 1
Mingap not satisfied
Maxgap satisfied

Gap = 6 – 2 = 4
Mingap satisfied
Maxgap not satisfied

Span = 6 – 1 = 5
Maxspan not satisified

Mingap and maxgap are not
satisfied by every pair of
consecutive elements. So they are
not satisfied by the pattern

SUBGRAPHMINING

22

Subgraph patterns

• Association analysis in graph data

23

Application Graphs Vertices Edges

Web mining Web browsing history Web pages Hyperlink between pages

Computational
Chemistry

Structure of chemical
compounds

Atoms or ions Bond between atoms or
ions

Network Computing Computer networks Computers and
Servers

Interconnection between
machines

Semantic Web Collection of XML
documents

XML Elements Parent-child relationship

Bioinformatics Protein structures Amino acids Contact residue

Subgraph patterns - Example

24

Databases

Homepage

Research

Artificial

Intelligence

Data Mining

Definitions
• A graph G = (V, E) is composed of:
• A set of vertices (or nodes) V

• A set of edges E

• A label for each edge e, l(e), if the graph is
labeled

• Subgraph: a graph G’ =(V’, E’) is a subgraph of
another graph G = (V, E) if:
• V’ is a subset of V

• E’ is a subset of E

25

a

b a

c c

b

(a) Labeled Graph

pq

p

p

r
s

t
r

t

qp

a

a

c

b

(b) Subgraph

p

s

t

p

Definitions

• Connected graph: if there is a path between every pair of vertices
• “Fully connected”

26Connected Disconnected Disconnected

Definitions
• Undirected graph: if it contains undirected

edges: (vi, vj) is the same as (vj, vi)

27Undirected

Databases

Homepage

Research

Artificial

Intelligence

Data Mining

Directed

Support

• Given a collection of graphs Cg, the support for subgraph g is the
fraction of all graphs in Cg that contain g as its subgraph

28

29

G1, G2, G3

G1, G3

Mining Frequent Subgraphs

30

1

1 21 2

2

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

23

13

∅

3

23

13

Approach 1
• Transform graphs and subgraphs into transaction format

31

- Each combination of vertex label – edge label –
vertex label is defined as an item

Approach 1
• Transform graphs and subgraphs into transaction format

32

a

b

e

c

p

q

r
p

a

b

d

p

r

G1 G2

q

e

c

a

p q

r

b

p

G3

d

r
d

r

(a,b,p) (a,b,q) (a,b,r) (b,c,p) (b,c,q) (b,c,r) … (d,e,r)

G1 1 0 0 0 0 1 … 0

G2 1 0 0 0 0 0 … 0

G3 0 0 1 1 0 0 … 0

G3 … … … … … … … …

The width of the transaction?

The number of edges in the graph

Approach 1
• Transform graphs and subgraphs into transaction format

33

Valid transformation only if every edge in the graph has
a unique combination of label and vertices

one-to-one mapping

Problem: Multiple edges will be mapped into one
item if they have the same label combination

Approach 2 – Apriori like
• The apriori algorithm still holds because a k-graph is frequent only if all of its (k-

1) graphs are frequent.

34

What is a k-graph? k vertices or k edges

Vertex growing Edge growing

• You start by a small size graph and generate candidates by adding a vertex/edge.
• Candidate generation in graphs is complex

Approach 2 – Apriori like
Candidate Generation: merge pairs of (k-1)-subgraphs to obtain candidate k-
subgraph

Candidate Pruning: discard all candidate k-subgraphs contains infrequent (k-1)-
subgraphs

Support Counting: count number of subgraphs containing each candidate

Candidate Elimination: discard all candidates not satisfying minsupport

35

Approach 2 – Apriori like
- Candidate Generation:

- These candidates are generated by joining two
similar but slightly different frequent subgraphs.

- A pair of frequent (k-1)-subgraphs are
merged to form a candidate k-subgraph,
if they share a common (k-2)-subgraph
(i.e., core).

- Vertex based generation: Size (# vertices)

- Edge based generation: Size (# edges)

Vertex Growing (AGM approach)

37

• In the vertex growing approach, increases the substructure by one vertex at each
step.

• At each step we will merge two similar but slightly different subgraphs that differs by
one vertices.

• The new candidate will have the core structure and the additional two vertices.

Vertex Growing (AGM approach)

38

Adjacency matrix:
-Rows and columns
correspond to nodes;

- non-zero cells along a
row (column)
correspond to
neighbors

- Cells correspond to
edges

- cell contains edge
label (or zero if no
edge) .

Vertex Growing (AGM approach)

39

-Vertex growing takes two
adjacency matrices that differ in
the last row, and creates an
augmented matrix by adding the
last row and last column of the
second matrix to the first matrix.

	Slide 1: Sequence and Graph Mining
	Slide 2: Sequence Mining
	Slide 3: Motivation
	Slide 4: Motivation
	Slide 5: Sequential Pattern Mining
	Slide 6: Sequence Data Example
	Slide 7: Subsequence
	Slide 8: Pattern Discovery
	Slide 9: Pattern Discovery
	Slide 10: Apriori Principle
	Slide 11: Candidate Set Generation
	Slide 12: Candidate Set Generation
	Slide 13: Candidate Pruning and Support Count
	Slide 14: Candidate Pruning and Support Count
	Slide 15: Candidate Pruning and Support Count
	Slide 16: Time constraints
	Slide 17: Time constraints
	Slide 18: Time constraints
	Slide 19: Time constraints – Example 1
	Slide 20: Time constraints – Example 2
	Slide 21: Time constraints – Example 3
	Slide 22: SUBGraph Mining
	Slide 23: Subgraph patterns
	Slide 24: Subgraph patterns - Example
	Slide 25: Definitions
	Slide 26: Definitions
	Slide 27: Definitions
	Slide 28: Support
	Slide 29
	Slide 30: Mining Frequent Subgraphs
	Slide 31: Approach 1
	Slide 32: Approach 1
	Slide 33: Approach 1
	Slide 34: Approach 2 – Apriori like
	Slide 35: Approach 2 – Apriori like
	Slide 36: Approach 2 – Apriori like
	Slide 37: Vertex Growing (AGM approach)
	Slide 38: Vertex Growing (AGM approach)
	Slide 39: Vertex Growing (AGM approach)

