SUBGRAPH MINING

(Cont'd)

Recall: Approach 2 – Apriori like

- The apriori algorithm still holds because a k-graph is frequent only if all of its (k-1) graphs are frequent.
	- What is a k-graph? k vertices or k edges

- You start by a small size graph and generate candidates by adding a vertex/edge.
- Candidate generation in graphs is complex

Multiplicity of Candidates (Edge growing)

- In the edge based candidate generation, we increase by one edge at a time.
- Two size k subgraphs are merged if and only if they share the same subgraph with k-1 edges.
- The new candidate will have the core and the two additional edges.
- Edge growing approach creates multiple candidates of different kinds.

Multiplicity of Candidates (Edge growing)

• Case 1: identical vertex labels

Multiplicity of Candidates (Edge growing)

- Case 2: Core contains identical labels
- All symmetric orientations of the core generate potentially a different candidate
- In the case when the k-1 graphs share more than on core of size k-2, we can obtain multiple candidates too depending on how we select the core.

Core: (k-1) subgraph that is common between the joint graphs

So how do we merge:

- let's assume that we have 2 graphs,
- A and c are the endpoints of the extra edge.

• Case 2: $a = c$ and $b \neq d$

G3 = Merge(G1,G2)

Given

 \bullet Case 3: a \neq c and b = d

^a b c d G3 = Merge(G1,G2) Core

 \bullet Case 4: $a = c$ and $b = d$

 $G3 = Merge(G1,G2)$

 $G3 = Merge(G1,G2)$

 $G3 = Merge(G1,G2)$

Candidate Pruning

- For a candidate k-subgraph, discard it if any of its (k-1)-subgraphs is not frequent
- Successively remove an edge from the k-subgraph
- Check if result is connected. If not, discard it
- If connected, check if it is frequent
	- Determining whether two graphs are topologically equivalent is known as the **graph isomorphism** problem

Applications

- Social Network Analysis
- Mobile call networks
- Biological networks
- Analysis:
	- Centrality: Identify most important actors
	- Community Detection
	- Information diffusion: how the information propagate
	- Role identification: who serves as a bridge between groups

Software Packages

- Graph Mining:
	- **gSpan:** graph-based Substructure pattern mining
	- **networkx**
	- Pegasus
	- R
- Sequential pattern mining:
	- SPMF: *www.philippe-fournier-viger.com/spmf/*
	- *R*

REGRESSION ANALYSIS

- Regression attempts to explain the variability in the dependent (target/response) variable in terms of the variability in independent (predictor) variables.
- If the independent (predictor) variable(s) sufficiently explain the variability in the dependent (target/response) variable, then the model can be used for prediction.

Examples of Regression

Problem Definition

- Given:
	- A training set $\{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$, where each x_i , corresponds to a set of independent (predictor) variables and y_i is the corresponding value of the dependent (target/response) variable
- Task
	- Learn a target function *f*(*x;w*) to predict the value of *y* for any given input *x*
		- *w* is the model parameter

Regression Models

- Linear models
	- Multiple linear regression
	- Ridge regression
	- Lasso regression
- Nonlinear models
	- Neural networks
	- Kernel ridge regression
	- Support vector regression
	- Locally weighted regression
	- Regression trees

Multiple Linear Regression (MLR)

• Assume the target function is linear

$$
f(x; w) = \sum_{j=1}^{d} w_j x_j + w_0 = \sum_{j=0}^{d} w_j x_j = w^T x
$$

• Estimation: find w that minimizes residual sum of square

$$
\min_{w} \sum_{i=1}^{N} (y_i - w^T x_i)^2 \longrightarrow w = [X^T X]^{-1} X^T y
$$

• Prediction: given a test $\hat{x} \longrightarrow f(\hat{x}) = \hat{x}^T |X^T X|^{-1} X^T y$

Example

Model Evaluation

• **Root mean square error**

• Most commonly used measure

• RMSE =
$$
\sqrt{\frac{\sum_i (y_i - \hat{y}_i)^2}{N}}
$$

- Exaggerate effect of outliers
- By squaring the errors, larger errors (outliers) are amplified

• **Mean absolute error**

• Does not exaggerate effect of outliers

•
$$
MAE = \frac{\sum_{i} |y_i - \hat{y}_i|}{N}
$$

• **Relative absolute error**

- Example: 10% error is equally important
	- Looking at multiple target variables whose scales are different
	- Predict car speed and direction

•
$$
y = 500
$$
, $\hat{y} = 550$ (degrees)

•
$$
z = 25.0
$$
, $\hat{z} = 27.5$ (mph)

$$
RAE = \frac{\sum_{i} |y_i - \widehat{y_i}|}{\sum_{i} |y_i - \overline{y}|}
$$

where \bar{y} is calculated from the training data $\bar{y} = \frac{1}{y}$ $\frac{1}{N}\sum_i y_i$

Effect of Correlated Features

$$
x_2 = 0.5x + \varepsilon(0, 0.04^2)
$$

Effect of Correlated Features

Suppose we add more correlated features (x_3, x_4, x_5)

Effect of Correlated Features

When model becomes overly complex, it is susceptible to overfitting problem

• Ridge regression shrinks the regression coefficients, so that variables, with minor contribution to the outcome, have their coefficients close to zero.

• The shrinkage of the coefficients is achieved by adding an L2-norm penalty term to the regression model, which is the sum of the squared coefficients.

- Uses an L_2 -norm to regularize $||w||$
- Objective function:

$$
\min_{w} \|y - Xw\|^2 + \lambda \|w\|^2
$$

- where λ is the regularization parameter
- Increasing λ will reduce the weights of the model parameters
- λ is typically chosen via cross-validation
- Can be solved in closed form

$$
w = \left[X^T X + \lambda I \right]^{-1} X^T y \longrightarrow
$$

Reduces to MLR solution when λ goes to zero

• Effect of varying regularization parameter λ

9. 8 7 $\overline{\Xi}_{6}$. 5 4 0.1 0.2 $0.\overline{3}$ 0.4 0.5 0.6 λ

Dashed lines represent the training and test accuracies of MLR without correlated features

intercept: weight associated with x_0 w_1 : weight associated with x_1 w_2 : weight associated with x_2 w_3 : weight associated with x_3 w_4 : weight associated with x_4 w_5 : weight associated with x_5

Increasing λ helps to shrink w (but **may not be able to zero it out)**

the higher the lamda, the higher the bias 27 and 27 an

• Issues

- we don't want to choose big λ values because the coefficients will become very small and therefore they might not be accurately reflecting what's going on
- In other words, the higher the lamda, the lower the variance and the higher the bias. -- underfit the target
- need to have a trade off between the variance and the bias

the higher the lamda, the higher the bias 28 and 28 an

Lasso Regression

- **Lasso is similar to ridge regression except it uses L1 regularization**
- Uses an L_1 -norm to regularize $\vert \, \vert w \vert \, \vert$
- Objective function:

$$
\min_{w} \frac{1}{2} \|y - Xw\|^2 + \lambda \|w\|_1
$$

- where λ is the regularization parameter
- Increasing λ will reduce the weights of the model parameters
- λ is typically chosen via cross-validation
- Cannot be solved in closed form because $\vert\,\vert\,{\sf w}\vert\,\vert_{\rm 1}$ is not a differentiable function
	- Must be solved iteratively longer training time (e.g., proximal gradient descent)

Lasso Regression

• Effect of varying regularization parameter λ

Lasso Regression

• Effect of correlated features

When $\lambda \geq 0.005$, weights of w₃, w₄, and w₅ go to 0 When $\lambda \geq 0.01$, weights of w₂, w₃, w₄, and w₅ go to 0

L1 vs L2

Common: The values of the weights try to be as low as possible to reduce penalty

Corners of the diamond leads to sparse matrices (some axis/features will be zero).

L2 regularization mainly focuses on keeping the weights as low as possible

Sparsity Smoothness

Nonlinear function

Kernel Ridge Regression

- Extends ridge regression to deal with nonlinear features
- combines **ridge regression** (linear least squares with l2-norm regularization) with the **kernel** trick.

$$
\min_{w} \|y - \Phi w\|^2 + \lambda \|w\|^2
$$

• where

$$
\Phi = \begin{bmatrix} \phi_1(x_1) & \phi_2(x_1) & \dots & \phi_m(x_1) \\ \phi_1(x_2) & \phi_2(x_2) & \dots & \phi_m(x_2) \\ \dots & \dots & \dots & \dots \\ \phi_1(x_N) & \phi_2(x_N) & \dots & \phi_m(x_N) \end{bmatrix}
$$

replaces all datacases with their feature vector

Kernel Ridge Regression

- What if we don't know the appropriate feature function Φ ?
	- Assume Φ is infinite-dimensional and then compute the regression function in infinite-dimensional space

$$
L = ||y - \Phi w||^{2} + \lambda ||w||^{2}
$$

$$
\nabla_{w}L = -2\Phi^{T}y + 2\Phi^{T}\Phi w + 2\lambda w = 0
$$

$$
\longrightarrow w = [\Phi^{T}\Phi + \lambda I]^{1} \Phi^{T}y
$$

• Then apply kernel trick!

Kernel Ridge Regression

• Kernel ridge regression requires computing the dot product $\Phi\Phi^\intercal$ in highdimensional space п п.

$$
w = \left[\Phi^T \Phi + \lambda I\right]^{-1} \Phi^T y
$$

• Kernel trick:

$$
w = [K + \lambda I]^{-1} \Phi^{\top} y
$$

• The inner product $\Phi\Phi^{\dagger}$ can be computed in its original feature space (instead of some transformed high-dimensional feature space Φ)

$$
K(x, y) = (x \cdot y + 1)^p
$$

$$
K(x, y) = e^{-\frac{||x - y||^2}{2\sigma^2}}
$$

$$
K(x, y) = \tanh(kx \cdot y - \delta)
$$

Nonlinear function

Support Vector Regression

- Similar to linear regression, learn a function to minimize prediction error
	- Disregard small errors
- User specifies ϵ , radius of a tube around the regression function
	- Points within this tube, error = 0
	- If tube can fit all training data
		- Function in the middle of the flattest tube that encloses them is returned
		- Training error $= 0$
	- Otherwise
		- Tradeoff between prediction error and tube flatness

Neural Networks for Regression

- Similar network structure to classification
- Different output layer and loss function
	- Classification
		- Output node for each class, class predicted as:
		- Sign function 2 classes
		- Softmax function 3+ classes
	- Regression:
		- Output 1 node

Regression Example Predict Vehicle Miles per Gallon

- Output: MPG (column 1)
- Input: (columns 2-8)
	- Number of cylinders
	- Displacement
	- Horsepower
	- Weight
	- Acceleration
	- Model Year
	- Origin

Learn Regression Models

```
import numpy as np
```
from sklearn.model_selection import train_test_split

```
# Load the data
```

```
data = np.loadtxt('auto-mpg.csv', delimiter=',')
```
 $y = data[:, 0]$

 $x = data[:, 1:8]$

Split into training and test

X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.5, random_state=891)

Regression Algorithms

- Multiple Linear (Ordinary least squares)
- Ridge
- Lasso
- Kernel
- •Neural Network

Multiple Linear / Ordinary Least Squares

from sklearn import linear_model # Train model

reg = linear_model.LinearRegression()

reg.fit(X train, y train)

View coefficients

print(reg.coef_)

[-0.65834328 0.01405478 -0.0237873 -0.00567093 -0.05662719 0.72666556 0.74193786]

from sklearn.metrics import mean_squared_error # Predict test set

y_pred = reg.predict(X_test)

print(mean_squared_error(y_test,y_pred))

11.944338673592521

from sklearn import linear_model # Train model

reg = linear_model.Ridge (alpha = .5) reg.fit(X train, y train)

View coefficients

print(reg.coef_)

[-0.65183737 0.0139174 -0.0236812 -0.0056743 -0.05646149 0.72650549 0.73621476]

from sklearn.metrics import mean_squared_error # Predict test set

y_pred = reg.predict(X_test)

print(mean_squared_error(y_test,y_pred))

11.948494405035525

alpha = λ

Regression Algorithms

- Multiple Linear (Ordinary least squares)
	- reg = linear_model.LinearRegression()
- Ridge
	- reg = linear model.Ridge (alpha = .5)
- Lasso
	- reg = linear_model.Lasso(alpha = 0.1)
- Kernel
	- from sklearn.kernel ridge import KernelRidge
	- reg = KernelRidge(alpha=1.0)
- Support Vector*
	- from sklearn.svm import SVR
	- reg = SVR(gamma='scale', C=1.0, epsilon=0.2)
- Neural Network
	- from sklearn.neural_network import MLPRegressor
	- reg = MLPRegressor()