SUBGRAPH MINING

(Cont'd)

Recall: Approach 2 – Apriori like

• The apriori algorithm still holds because a k-graph is frequent only if all of its (k-1) graphs are frequent.

What is a k-graph? k vertices or k edges

- You start by a small size graph and generate candidates by adding a vertex/edge.
- Candidate generation in graphs is complex

Multiplicity of Candidates (Edge growing)

- In the edge based candidate generation, we increase by one edge at a time.
- Two size k subgraphs are merged if and only if they share the same subgraph with k-1 edges.
- The new candidate will have the core and the two additional edges.
- Edge growing approach creates multiple candidates of different kinds.

Multiplicity of Candidates (Edge growing)

• Case 1: identical vertex labels

Multiplicity of Candidates (Edge growing)

- Case 2: Core contains identical labels
- All symmetric orientations of the core generate potentially a different candidate
- In the case when the k-1 graphs share more than on core of size k-2, we can obtain multiple candidates too depending on how we select the core.

Core: (k-1) subgraph that is common between the joint graphs

So how do we merge:

- let's assume that we have 2 graphs,
- A and c are the endpoints of the extra edge.

• Case 2: a = c and $b \neq d$

G3 = Merge(G1,G2)

G2

Given

• Case 3: $a \neq c$ and b = d

G3 = Merge(G1,G2)

• Case 4: a = c and b = d

G3 = Merge(G1,G2)

G3 = Merge(G1,G2)

Candidate Pruning

- For a candidate k-subgraph, discard it if any of its (k-1)-subgraphs is not frequent
- Successively remove an edge from the k-subgraph
- Check if result is connected. If not, discard it
- If connected, check if it is frequent
 - Determining whether two graphs are topologically equivalent is known as the graph isomorphism problem

Applications

- Social Network Analysis
- Mobile call networks
- Biological networks
- Analysis:
 - Centrality: Identify most important actors
 - Community Detection
 - Information diffusion: how the information propagate
 - Role identification: who serves as a bridge between groups

Software Packages

- Graph Mining:
 - gSpan: graph-based Substructure pattern mining
 - networkx
 - Pegasus
 - R
- Sequential pattern mining:
 - SPMF: <u>www.philippe-fournier-viger.com/spmf/</u>
 - *R*

REGRESSION ANALYSIS

- Regression attempts to explain the variability in the dependent (target/response) variable in terms of the variability in independent (predictor) variables.
- If the independent (predictor) variable(s) sufficiently explain the variability in the dependent (target/response) variable, then the model can be used for prediction.

Examples of Regression

Task	Independent variables (Predictor), x	Target/Response variable, y
Forecasting the monthly sales of a company	Historical monthly sales and other predictor variables (inventory, etc)	Monthly sales at time t
Predicting power consumption at data centers	Sensor measurements of temperature, fan speed, etc	Expected power consumed
Predicting crime rate	Statistics about housing, job/income, education, etc	Crime rate in a given city or region

Problem Definition

- Given:
 - A training set { (x_1, y_1) , (x_2, y_2) ,..., (x_N, y_N) }, where each x_i , corresponds to a set of independent (predictor) variables and y_i is the corresponding value of the dependent (target/response) variable
- Task
 - Learn a target function f(x; w) to predict the value of y for any given input x
 - w is the model parameter

Regression Models

- Linear models
 - Multiple linear regression
 - Ridge regression
 - Lasso regression

- Nonlinear models
 - Neural networks
 - Kernel ridge regression
 - Support vector regression
 - Locally weighted regression
 - Regression trees

Multiple Linear Regression (MLR)

Assume the target function is linear

$$f(x;w) = \sum_{j=1}^{d} w_j x_j + w_0 = \sum_{j=0}^{d} w_j x_j = w^T x$$

• Estimation: find w that minimizes residual sum of square

$$\min_{w} \sum_{i=1}^{N} (y_i - w^T x_i)^2 \longrightarrow w = [X^T X]^{-1} X^T y$$

• <u>Prediction</u>: given a test $\widehat{x} \longrightarrow f(\widehat{x}) = \widehat{x}^T [X^T X]^{-1} X^T y$

Example

Model Evaluation

Root mean square error

• Most commonly used measure

• RMSE =
$$\sqrt{\frac{\sum_{i}(y_i - \hat{y}_i)^2}{N}}$$

- Exaggerate effect of outliers
- By squaring the errors, larger errors (outliers) are amplified

Mean absolute error

• Does not exaggerate effect of outliers

•
$$MAE = \frac{\sum_i |y_i - \hat{y}_i|}{N}$$

Relative absolute error

- Example: 10% error is equally important
 - Looking at multiple target variables whose scales are different
 - Predict car speed and direction

•
$$y = 500$$
, $\hat{y} = 550$ (degrees)

$$z = 25.0, \quad \hat{z} = 27.5$$
 (mph)

$$RAE = \frac{\sum_{i} |y_i - \widehat{y_i}|}{\sum_{i} |y_i - \overline{y}|}$$

where \bar{y} is calculated from the training data $\bar{y} = \frac{1}{N} \sum_{i} y_{i}$

Effect of Correlated Features

$$x_2 = 0.5x + \varepsilon(0, 0.04^2)$$

	f(x)	Training error	Test error	$\ w\ _1$
Ground truth	y = -3x + 1			4
Original feature	y = -3.24x + 1.08	0.8919	1.0476	4.323
Correlated feature x ₂	$y = -5.90x + 5.92x_2 + 1.00$	0.8562	1.0876	12.817

Effect of Correlated Features

Suppose we add more correlated features (x_3, x_4, x_5)

	f(x)	Training error	Test error	$\ w\ _1$
Ground truth	y = -3x + 1			4
Original feature	y = -3.24x + 1.08	0.8919	1.0476	4.323
Correlated feature x ₂	$y = -5.90x + 5.92x_2 + 1.00$	0.8562	1.0876	12.817
Correlated feature x ₃	$y = -6.22x - 2.30x_2 + 17.14x_3 + 1.08$	0.8342	1.0947	26.744
Correlated feature x ₄	$y = -7.16x + 0.93x_2 + 8.39x_3 + 11.85x_4 + 1.12$	0.8257	1.1289	29.454
Correlated feature x ₅	$y = -7.16x + 4.50x_2 + 3.52x_3$ $-6.55x_4 + 25.68x_5 + 1.20$	0.7994	1.1465	48.615 22

Effect of Correlated Features

When model becomes overly complex, it is susceptible to <u>overfitting</u> problem

 Ridge regression shrinks the regression coefficients, so that variables, with minor contribution to the outcome, have their coefficients close to zero.

• The shrinkage of the coefficients is achieved by adding an L2-norm penalty term to the regression model, which is the sum of the squared coefficients.

- Uses an L₂-norm to regularize ||w||
- Objective function:

$$\min_{w} \|y - Xw\|^2 + \lambda \|w\|^2$$

- where λ is the regularization parameter
- Increasing λ will reduce the weights of the model parameters
- λ is typically chosen via cross-validation
- Can be solved in closed form

$$w = \left[X^T X + \lambda \mathbf{I} \right]^{-1} X^T y \quad \longrightarrow \quad$$

Reduces to MLR solution when λ goes to zero

• Effect of varying regularization parameter λ

 $9^{-1}_{-8}^{-1}_{-5}^{-1}_{-4}^{-1}_{-6}^{-$

Dashed lines represent the training and test accuracies of MLR without correlated features

intercept: weight associated with x_0 w₁: weight associated with x_1 w₂: weight associated with x_2 w₃: weight associated with x_3 w₄: weight associated with x_4 w₅: weight associated with x_5

Increasing λ helps to shrink w (but may not be able to zero it out)

w5	w4	w3	w2	w1	intercept	λ
1.189813	0.675139	1.204033	1.136601	-4.038929	1.014095	0.05
0.548883	0.245722	0.524730	0.381790	-3.325774	0.976472	0.10
0.322764	0.087161	0.239958	0.035098	-2.969599	0.943383	0.15
0.208739	0.007009	0.086614	-0.155993	-2.741218	0.912547	0.20
0.140917	-0.039875	-0.006898	-0.272487	-2.574462	0.883526	0.25
0.096521	-0.069655	-0.068291	-0.347892	-2.442877	0.856117	0.30
0.043078	-0.103277	-0.140596	-0.433153	-2.240061	0.805593	0.40
0.013134	-0.119748	-0.178442	-0.473429	-2.084117	0.760076	0.50
-0.005228	-0.127943	-0.199119	-0.491438	-1.956330	0.718857	0.60

the higher the lamda, the higher the bias

Issues

- we don't want to choose big λ values because the coefficients will become very small and therefore they might not be accurately reflecting what's going on
- In other words, the higher the lamda, the lower the variance and the higher the bias.
 -- underfit the target
- need to have a trade off between the variance and the bias

the higher the lamda, the higher the bias

Lasso Regression

- Lasso is similar to ridge regression except it uses L1 regularization
- Uses an L₁-norm to regularize ||w||
- Objective function:

$$\min_{w} \frac{1}{2} \|y - Xw\|^2 + \lambda \|w\|_1$$

- \bullet where λ is the regularization parameter
- Increasing λ will reduce the weights of the model parameters
- $\boldsymbol{\lambda}$ is typically chosen via cross-validation
- Cannot be solved in closed form because $||w||_1$ is not a differentiable function
 - Must be solved iteratively longer training time (e.g., proximal gradient descent)

Lasso Regression

• Effect of varying regularization parameter λ

Lasso Regression

• Effect of correlated features

When $\lambda \ge 0.005$, weights of w_3 , w_4 , and w_5 go to 0 When $\lambda \ge 0.01$, weights of w_2 , w_3 , w_4 , and w_5 go to 0

λ	intercept	w1	w2	w3	w4	w5
0.001	1.153167	-6.655387	4.215581	1.510823	0.0	15.835091
0.005	1.024513	-3.988557	1.851604	0.000000	0.0	0.000000
0.010	1.017915	-3.071683	0.000000	0.000000	0.0	0.000000
0.015	0.986573	-2.986347	0.000000	0.000000	0.0	0.000000
0.020	0.955231	-2.901011	0.000000	0.000000	0.0	0.000000
0.030	0.892546	-2.730340	-0.000000	0.000000	-0.0	0.000000
0.040	0.829862	-2.559668	-0.000000	-0.000000	-0.0	0.000000
0.050	0.767177	-2.388997	-0.000000	-0.000000	-0.0	0.000000
0.060	0.704493	-2.218325	-0.000000	-0.000000	-0.0	-0.000000

L1 vs L2

Common: The values of the weights try to be as low as possible to reduce penalty

L1 regularization's shape is diamond-like. Corners of the diamond leads to sparse matrices (some axis/features will be zero).

L2 regularization mainly focuses on keeping the weights as low as possible

Sparsity

Smoothness

Nonlinear function

Method	Test error
Linear	14.699
Ridge $\lambda = 0.1$	14.487

Kernel Ridge Regression

- Extends ridge regression to deal with nonlinear features
- combines ridge regression (linear least squares with l2-norm regularization) with the kernel trick.

$$\min_{w} \|y - \Phi w\|^2 + \lambda \|w\|^2$$

where

$$\Phi = \begin{bmatrix} \phi_1(x_1) & \phi_2(x_1) & \dots & \phi_m(x_1) \\ \phi_1(x_2) & \phi_2(x_2) & \dots & \phi_m(x_2) \\ \dots & \dots & \dots & \dots \\ \phi_1(x_N) & \phi_2(x_N) & \dots & \phi_m(x_N) \end{bmatrix}$$

replaces all datacases with their feature vector

Kernel Ridge Regression

- What if we don't know the appropriate feature function Φ ?
 - Assume Φ is infinite-dimensional and then compute the regression function in infinite-dimensional space

$$L = \|y - \Phi w\|^{2} + \lambda \|w\|^{2}$$
$$\nabla_{w}L = -2\Phi^{T}y + 2\Phi^{T}\Phi w + 2\lambda w = 0$$
$$\longrightarrow w = [\Phi^{T}\Phi + \lambda I]^{-1}\Phi^{T}y$$

• Then apply kernel trick!

Kernel Ridge Regression

• Kernel ridge regression requires computing the dot product $\Phi \Phi^{\mathsf{T}}$ in highdimensional space

$$w = \left[\Phi^T \Phi + \lambda I \right]^{-1} \Phi^T y$$

• Kernel trick:

$$w = [K + \lambda I]^{-1} \Phi^{\mathsf{T}} y$$

• The inner product $\Phi \Phi^{\mathsf{T}}$ can be computed in its original feature space (instead of some transformed high-dimensional feature space Φ)

$$K(x, y) = (x \cdot y + 1)^p$$

$$K(x, y) = e^{\frac{\|x - y\|^2}{2\sigma^2}}$$

$$K(x, y) = \tanh(kx \cdot y - \delta)$$

Nonlinear function

Method	Test error
Linear	14.699
Ridge $\lambda = 0.1$	14.487
Kernel	6.286

Support Vector Regression

- Similar to linear regression, learn a function to minimize prediction error
 - Disregard small errors
- User specifies *ε*, radius of a tube around the regression function
 - Points within this tube, error = 0
 - If tube can fit all training data
 - Function in the middle of the flattest tube that encloses them is returned
 - Training error = 0
 - Otherwise
 - Tradeoff between prediction error and tube flatness

Neural Networks for Regression

- Similar network structure to classification
- Different output layer and loss function
 - Classification
 - Output node for each class, class predicted as:
 - Sign function 2 classes
 - Softmax function 3+ classes
 - Regression:
 - Output 1 node

Regression Example Predict Vehicle Miles per Gallon

- Output: MPG (column 1)
- Input: (columns 2-8)
 - Number of cylinders
 - Displacement
 - Horsepower
 - Weight
 - Acceleration
 - Model Year
 - Origin

Learn Regression Models

```
import numpy as np
```

from sklearn.model_selection import train_test_split

```
# Load the data
```

```
data = np.loadtxt('auto-mpg.csv', delimiter=',')
```

y = data[:,0]

x = data[:,1:8]

Split into training and test

X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.5, random_state=891)

Regression Algorithms

- Multiple Linear (Ordinary least squares)
- Ridge
- Lasso
- Kernel
- Neural Network

Multiple Linear / Ordinary Least Squares

from sklearn import linear_model # Train model

reg = linear_model.LinearRegression()

reg.fit(X_train,y_train)

View coefficients

print(reg.coef_)

[-0.65834328 0.01405478 -0.0237873 -0.00567093 -0.05662719 0.72666556 0.74193786] from sklearn.metrics import mean_squared_error
Predict test set
y_pred = reg.predict(X_test)

print(mean_squared_error(y_test,y_pred))

11.944338673592521

from sklearn import linear_model # Train model

reg = linear_model.Ridge (alpha = .5)
reg.fit(X_train,y_train)

View coefficients

print(reg.coef_)

[-0.65183737 0.0139174 -0.0236812 -0.0056743 -0.05646149 0.72650549 0.73621476] from sklearn.metrics import mean_squared_error
Predict test set

y_pred = reg.predict(X_test)

print(mean_squared_error(y_test,y_pred))

11.948494405035525

alpha = λ

Regression Algorithms

- Multiple Linear (Ordinary least squares)
 - reg = linear_model.LinearRegression()

Ridge

- reg = linear_model.Ridge (alpha = .5)
- Lasso
 - reg = linear_model.Lasso(alpha = 0.1)

- Kernel
 - from sklearn.kernel_ridge import KernelRidge
 - reg = KernelRidge(alpha=1.0)
- Support Vector*
 - from sklearn.svm import SVR
 - reg = SVR(gamma='scale', C=1.0, epsilon=0.2)
- Neural Network
 - from sklearn.neural_network import MLPRegressor
 - reg = MLPRegressor()