
SUBGRAPHMINING
(Cont’d)

1

Recall: Approach 2 – Apriori like
• The apriori algorithm still holds because a k-graph is frequent only if all of its (k-

1) graphs are frequent.

2

What is a k-graph? k vertices or k edges

Vertex growing Edge growing

• You start by a small size graph and generate candidates by adding a vertex/edge.
• Candidate generation in graphs is complex

Multiplicity of Candidates (Edge growing)

3

• In the edge based candidate generation, we increase by one edge at a time.

• Two size k subgraphs are merged if and only if they share the same subgraph with k-1
edges.

• The new candidate will have the core and the two additional edges.

• Edge growing approach creates multiple candidates of different kinds.

Multiplicity of Candidates (Edge growing)

• Case 1: identical vertex labels

4

a

b
e

c

a

b
e

c

+

a

b
e

c

e
a

b
e

c

a

b
e

c

a

b
e

c

+
e

a

b
e

c

Multiplicity of Candidates (Edge growing)
• Case 2: Core contains identical labels

5

Core: (k-1) subgraph that is common

between the joint graphs

- All symmetric orientations of the core generate potentially a different
candidate

- In the case when the k-1 graphs share more than on core of size k-2, we
can obtain multiple candidates too depending on how we select the core.

Candidate Generation by Edge Growing

a b c d

G1 G2

Core Core

6

•Case 1: a  c and b  d a b

c d

G3 = Merge(G1,G2)

Core

• Given

So how do we merge:
- let’s assume that we have 2 graphs,
- A and c are the endpoints of the extra edge.

Candidate Generation by Edge Growing

a b

a d

G3 = Merge(G1,G2)

Core

7

•Case 2: a = c and b  d

a b

d

G3 = Merge(G1,G2)

Core

a b c d

G1 G2

Core Core

Given

Candidate Generation by Edge Growing

a b

c d

G3 = Merge(G1,G2)

Core

8

•Case 3: a  c and b = d

a b

G3 = Merge(G1,G2)

Core c

a b c d

G1 G2

Core Core

Given

Candidate Generation by Edge Growing

•Case 4: a = c and b = d

9

a b c d

G1 G2

Core Core

Given

Candidate Pruning

• For a candidate k-subgraph, discard it if any of its (k-1)-subgraphs is
not frequent

• Successively remove an edge from the k-subgraph

• Check if result is connected. If not, discard it

• If connected, check if it is frequent
• Determining whether two graphs are topologically equivalent is known

as the graph isomorphism problem

10

Applications

• Social Network Analysis

• Mobile call networks

• Biological networks

• Analysis:
• Centrality: Identify most important actors

• Community Detection

• Information diffusion: how the information propagate

• Role identification: who serves as a bridge between groups
11

Software Packages

• Graph Mining:
• gSpan: graph-based Substructure pattern mining

• networkx

• Pegasus

• R

• Sequential pattern mining:
• SPMF: www.philippe-fournier-viger.com/spmf/

• R

12

http://www.philippe-fournier-viger.com/spmf/

REGRESSION ANALYSIS

13

• Regression attempts to explain the variability in the dependent (target/response)
variable in terms of the variability in independent (predictor) variables.

• If the independent (predictor) variable(s) sufficiently explain the variability in the
dependent (target/response) variable, then the model can be used for prediction.

Regression

Predictor variable (x)
R

e
s
p

o
n

s
e

 v
a

ri
a

b
le

 (
y
)

14

Examples of Regression

Task Independent variables
(Predictor), x

Target/Response variable, y

Forecasting the monthly sales
of a company

Historical monthly sales and
other predictor variables
(inventory, etc)

Monthly sales at time t

Predicting power consumption
at data centers

Sensor measurements of
temperature, fan speed, etc

Expected power consumed

Predicting crime rate Statistics about housing,
job/income, education, etc

Crime rate in a given city or
region

15

Problem Definition

• Given:
• A training set {(x1, y1), (x2, y2),…, (xN, yN)}, where each xi, corresponds to a set

of independent (predictor) variables and yi is the corresponding value of the
dependent (target/response) variable

• Task
• Learn a target function f(x;w) to predict the value of y for any given input x

• w is the model parameter

16

Regression Models

• Linear models
• Multiple linear regression

• Ridge regression

• Lasso regression

• Nonlinear models
• Neural networks

• Kernel ridge regression

• Support vector regression

• Locally weighted regression

• Regression trees

17

Multiple Linear Regression (MLR)

• Assume the target function is linear

• Estimation: find w that minimizes residual sum of square

• Prediction: given a test

18

Example

19

Model Evaluation

• Root mean square error
• Most commonly used measure

• Exaggerate effect of outliers

• By squaring the errors, larger errors
(outliers) are amplified

• Mean absolute error
• Does not exaggerate effect of outliers

• Relative absolute error
• Example: 10% error is equally important

• Looking at multiple target variables whose
scales are different

• Predict car speed and direction

• 𝑦 = 500, ො𝑦 = 550 (degrees)

• 𝑧 = 25.0, Ƹ𝑧 = 27.5 (mph)

where ത𝑦 is calculated from the training data

ത𝑦 =
1

𝑁
σ𝑖 𝑦𝑖

20

Effect of Correlated Features

• Suppose we add a correlated
feature to the data

f(x) Training error Test error 𝒘 𝟏

Ground truth y = -3x + 1 4

Original feature y = -3.24x + 1.08 0.8919 1.0476 4.323

Correlated feature x2 y = - 5.90x +5.92x2
 + 1.00

0.8562 1.0876 12.817

21

Effect of Correlated Features

f(x) Training error Test error 𝒘 𝟏

Ground truth y = -3x + 1 4

Original feature y = -3.24x + 1.08 0.8919 1.0476 4.323

Correlated feature x2 y = - 5.90x +5.92x2 + 1.00 0.8562 1.0876 12.817

Correlated feature x3 y = - 6.22x - 2.30x2 +17.14x3

 + 1.08
0.8342 1.0947 26.744

Correlated feature x4 y = - 7.16x + 0.93x2 + 8.39x3

 + 11.85x4 + 1.12
0.8257 1.1289 29.454

Correlated feature x5 y = - 7.16x + 4.50x2 + 3.52x3

 - 6.55x4 + 25.68x5 + 1.20
0.7994 1.1465 48.615

22

Suppose we add more correlated features (𝑥3, 𝑥4, 𝑥5)

Effect of Correlated Features

When model becomes overly
complex, it is susceptible to
overfitting problem

23

Solution?

Ridge Regression

• Ridge regression shrinks the regression coefficients, so that variables, with
minor contribution to the outcome, have their coefficients close to zero.

• The shrinkage of the coefficients is achieved by adding an L2-norm penalty
term to the regression model, which is the sum of the squared coefficients.

24

Ridge Regression

• Uses an L2-norm to regularize ||w||

• Objective function:

• where  is the regularization parameter

• Increasing  will reduce the weights of the model parameters

•  is typically chosen via cross-validation

• Can be solved in closed form

Reduces to MLR solution

when  goes to zero

25

Ridge Regression

• Effect of varying regularization parameter 𝜆

Dashed lines represent the training and test

accuracies of MLR without correlated features
26

Ridge Regression
intercept: weight associated with x0

w1: weight associated with x1

w2: weight associated with x2

w3: weight associated with x3

w4: weight associated with x4

w5: weight associated with x5

Increasing  helps to shrink w (but
may not be able to zero it out)

w

27the higher the lamda, the higher the bias

Ridge Regression

• Issues

w

28the higher the lamda, the higher the bias

• we don't want to choose big λ values because the
coefficients will become very small and therefore they
might not be accurately reflecting what's going on

• In other words, the higher the lamda, the lower the
variance and the higher the bias.

 -- underfit the target

• need to have a trade off between the variance and the
bias

Lasso Regression
• Lasso is similar to ridge regression except it uses L1 regularization

• Uses an L1-norm to regularize ||w||

• Objective function:

• where  is the regularization parameter

• Increasing  will reduce the weights of the model parameters

•  is typically chosen via cross-validation

• Cannot be solved in closed form because ||w||1 is not a differentiable function
• Must be solved iteratively – longer training time (e.g., proximal gradient descent)

29

Lasso Regression

• Effect of varying regularization parameter 

30

Lasso Regression

• Effect of correlated features

When   0.005, weights of w3, w4, and w5 go to 0

When   0.01, weights of w2, w3, w4, and w5 go to 0

31

L1 vs L2

32

L2 regularization mainly focuses on
keeping the weights as low as possible

Common: The values of the weights try to be as low as
possible to reduce penalty

L1 regularization’s shape is diamond-like.
Corners of the diamond leads to sparse matrices
(some axis/features will be zero).

Sparsity Smoothness

Nonlinear function

Method Test error

Linear 14.699

Ridge
𝜆 = 0.1

14.487

33

Kernel Ridge Regression

• Extends ridge regression to deal with nonlinear features

• combines ridge regression (linear least squares with l2-norm regularization)
with the kernel trick.

• where

34

replaces all data-
cases with their
feature vector

Kernel Ridge Regression

• What if we don’t know the appropriate feature function ?
• Assume  is infinite-dimensional and then compute the regression

function in infinite-dimensional space

• Then apply kernel trick!

35

Kernel Ridge Regression

• Kernel ridge regression requires computing the dot product T in high-
dimensional space

• Kernel trick:
𝑤 = 𝐾 + 𝜆𝐼 −1Φ⊤𝑦

• The inner product T can be computed in its original feature space (instead of some
transformed high-dimensional feature space )

𝐾 𝑥, 𝑦 = 𝑥 ∙ 𝑦 + 1 𝑝

𝐾 𝑥, 𝑦 = 𝑒
−

𝑥−𝑦 2

2𝜎2

𝐾 𝑥, 𝑦 = tanh(𝑘𝑥 ∙ 𝑦 − 𝛿)

36

Nonlinear function

Method Test error

Linear 14.699

Ridge
𝜆 = 0.1

14.487

Kernel 6.286

37

Support Vector Regression

• Similar to linear regression, learn a function to
minimize prediction error
• Disregard small errors

• User specifies 𝜖, radius of a tube around the
regression function
• Points within this tube, error = 0

• If tube can fit all training data
• Function in the middle of the flattest tube that

encloses them is returned

• Training error = 0

• Otherwise
• Tradeoff between prediction error and tube flatness

38

Neural Networks for Regression

• Similar network structure to classification

• Different output layer and loss function
• Classification

• Output node for each class, class predicted
as:

• Sign function – 2 classes

• Softmax function – 3+ classes

• Regression:
• Output 1 node

39

Regression Example
Predict Vehicle Miles per Gallon

• Output: MPG (column 1)

• Input: (columns 2-8)
• Number of cylinders

• Displacement

• Horsepower

• Weight

• Acceleration

• Model Year

• Origin

40

Learn Regression Models

import numpy as np

from sklearn.model_selection import train_test_split

Load the data

data = np.loadtxt('auto-mpg.csv', delimiter=',')

y = data[:,0]

x = data[:,1:8]

Split into training and test

X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.5, random_state=891)

41

Regression Algorithms

•Multiple Linear (Ordinary least squares)

•Ridge

• Lasso

• Kernel

•Neural Network

42

Multiple Linear / Ordinary Least Squares

from sklearn import linear_model

Train model

reg = linear_model.LinearRegression()

reg.fit(X_train,y_train)

View coefficients

print(reg.coef_)

[-0.65834328 0.01405478
-0.0237873 -0.00567093
-0.05662719 0.72666556
0.74193786]

from sklearn.metrics import mean_squared_error

Predict test set

y_pred = reg.predict(X_test)

print(mean_squared_error(y_test,y_pred))

 11.944338673592521

43

Ridge Regression

from sklearn import linear_model

Train model

reg = linear_model.Ridge (alpha = .5)

reg.fit(X_train,y_train)

View coefficients

print(reg.coef_)

[-0.65183737 0.0139174
-0.0236812 -0.0056743
-0.05646149 0.72650549
 0.73621476]

from sklearn.metrics import mean_squared_error

Predict test set

y_pred = reg.predict(X_test)

print(mean_squared_error(y_test,y_pred))

 11.948494405035525

alpha = 𝜆

44

Regression Algorithms

• Multiple Linear (Ordinary least squares)
• reg = linear_model.LinearRegression()

• Ridge
• reg = linear_model.Ridge (alpha = .5)

• Lasso
• reg = linear_model.Lasso(alpha = 0.1)

• Kernel
• from sklearn.kernel_ridge import KernelRidge

• reg = KernelRidge(alpha=1.0)

• Support Vector*
• from sklearn.svm import SVR

• reg = SVR(gamma='scale', C=1.0, epsilon=0.2)

• Neural Network
• from sklearn.neural_network import

MLPRegressor

• reg = MLPRegressor()

*Sometimes Support vector regression produces an error, use LIBSVM for Support Vector Machines 45

	Slide 1: SUBGraph Mining
	Slide 2: Recall: Approach 2 – Apriori like
	Slide 3: Multiplicity of Candidates (Edge growing)
	Slide 4: Multiplicity of Candidates (Edge growing)
	Slide 5: Multiplicity of Candidates (Edge growing)
	Slide 6: Candidate Generation by Edge Growing
	Slide 7: Candidate Generation by Edge Growing
	Slide 8: Candidate Generation by Edge Growing
	Slide 9: Candidate Generation by Edge Growing
	Slide 10: Candidate Pruning
	Slide 11: Applications
	Slide 12: Software Packages
	Slide 13: Regression Analysis
	Slide 14: Regression
	Slide 15: Examples of Regression
	Slide 16: Problem Definition
	Slide 17: Regression Models
	Slide 18: Multiple Linear Regression (MLR)
	Slide 19: Example
	Slide 20: Model Evaluation
	Slide 21: Effect of Correlated Features
	Slide 22: Effect of Correlated Features
	Slide 23: Effect of Correlated Features
	Slide 24: Ridge Regression
	Slide 25: Ridge Regression
	Slide 26: Ridge Regression
	Slide 27: Ridge Regression
	Slide 28: Ridge Regression
	Slide 29: Lasso Regression
	Slide 30: Lasso Regression
	Slide 31: Lasso Regression
	Slide 32: L1 vs L2
	Slide 33: Nonlinear function
	Slide 34: Kernel Ridge Regression
	Slide 35: Kernel Ridge Regression
	Slide 36: Kernel Ridge Regression
	Slide 37: Nonlinear function
	Slide 38: Support Vector Regression
	Slide 39: Neural Networks for Regression
	Slide 40: Regression Example Predict Vehicle Miles per Gallon
	Slide 41: Learn Regression Models
	Slide 42: Regression Algorithms
	Slide 43: Multiple Linear / Ordinary Least Squares
	Slide 44: Ridge Regression
	Slide 45: Regression Algorithms

