
SUBGRAPHMINING
(Cont’d)
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Recall: Approach 2 – Apriori like
• The apriori algorithm still holds because a k-graph is frequent only if all of its (k-

1) graphs are frequent.
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What is a k-graph? k vertices or k edges

Vertex growing Edge growing

• You start by a small size graph and generate candidates by adding a vertex/edge. 
• Candidate generation in graphs is complex



Multiplicity of Candidates (Edge growing)
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• In the edge based candidate generation, we increase by one edge at a time. 

• Two size k subgraphs are merged if and only if they share the same subgraph with k-1 
edges.

• The new candidate will have the core and the two additional edges. 

• Edge growing approach creates multiple candidates of different kinds.



Multiplicity of Candidates (Edge growing)

• Case 1: identical vertex labels
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Multiplicity of Candidates (Edge growing)
• Case 2: Core contains identical labels
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Core: (k-1) subgraph that is common 

between the joint graphs

- All symmetric orientations of the core generate potentially a different 
candidate 

- In the case when the k-1 graphs share more than on core of size k-2, we 
can obtain multiple candidates too depending on how we select the core.



Candidate Generation by Edge Growing

a b c d

G1 G2

Core Core
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•Case 1: a  c and b  d a b

c d

G3 = Merge(G1,G2)

Core

• Given

So how do we merge:
- let’s assume that we have 2 graphs,
- A and c are the endpoints of the extra edge.



Candidate Generation by Edge Growing

a b

a d

G3 = Merge(G1,G2)

Core
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•Case 2: a = c and b  d

a b
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G3 = Merge(G1,G2)

Core

a b c d

G1 G2

Core Core

Given



Candidate Generation by Edge Growing

a b

c d

G3 = Merge(G1,G2)

Core
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•Case 3: a  c and b = d

a b

G3 = Merge(G1,G2)

Core c

a b c d

G1 G2

Core Core

Given



Candidate Generation by Edge Growing

•Case 4: a = c and b = d
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Candidate Pruning

• For a candidate k-subgraph, discard it if any of its (k-1)-subgraphs is 
not frequent

• Successively remove an edge from the k-subgraph

• Check if result is connected. If not, discard it

• If connected, check if it is frequent
• Determining whether two graphs are topologically equivalent is known 

as the graph isomorphism problem
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Applications

• Social Network Analysis

• Mobile call networks

• Biological networks

• Analysis:
• Centrality: Identify most important actors

• Community Detection

• Information diffusion: how the information propagate

• Role identification: who serves as a bridge between groups
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Software Packages

• Graph Mining:
• gSpan: graph-based Substructure pattern mining

• networkx

• Pegasus

• R

• Sequential pattern mining:
• SPMF: www.philippe-fournier-viger.com/spmf/

• R 
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http://www.philippe-fournier-viger.com/spmf/


REGRESSION ANALYSIS
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• Regression attempts to explain the variability in the dependent (target/response) 
variable in terms of the variability in independent (predictor) variables.

• If the independent (predictor) variable(s) sufficiently explain the variability in the 
dependent (target/response) variable, then the model can be used for prediction. 

Regression

Predictor variable (x)
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Examples of Regression

Task Independent variables 
(Predictor), x

Target/Response variable, y

Forecasting the monthly sales 
of a company

Historical monthly sales and 
other predictor variables 
(inventory, etc)

Monthly sales at time t

Predicting power consumption 
at data centers

Sensor measurements of 
temperature, fan speed, etc 

Expected power consumed

Predicting crime rate Statistics about housing, 
job/income, education, etc

Crime rate in a given city or 
region
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Problem Definition

• Given: 
• A training set {(x1, y1), (x2, y2),…, (xN, yN)}, where each xi, corresponds to  a set 

of independent (predictor) variables and yi is the corresponding value of the 
dependent (target/response) variable

• Task
• Learn a target function f(x;w) to predict the value of y for any given input x 

•  w is the model parameter
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Regression Models

• Linear models
• Multiple linear regression

• Ridge regression

• Lasso regression

• Nonlinear models
• Neural networks

• Kernel ridge regression

• Support vector regression

• Locally weighted regression

• Regression trees
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Multiple Linear Regression (MLR)

• Assume the target function is linear

• Estimation: find w that minimizes residual sum of square

• Prediction: given a test 
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Example
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Model Evaluation

• Root mean square error 
• Most commonly used measure

• Exaggerate effect of outliers 

• By squaring the errors, larger errors 
(outliers) are amplified

• Mean absolute error
• Does not exaggerate effect of outliers

• Relative absolute error
• Example: 10% error is equally important

• Looking at multiple target variables whose 
scales are different

• Predict car speed and direction 

• 𝑦 = 500,  ො𝑦 = 550 (degrees)

• 𝑧 = 25.0,  Ƹ𝑧 = 27.5   (mph)

where ത𝑦 is calculated from the training data 

ത𝑦 =
1

𝑁
σ𝑖 𝑦𝑖  
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Effect of Correlated Features

• Suppose we add a correlated 
feature to the data

f(x) Training error Test error 𝒘 𝟏

Ground truth y = -3x + 1 4

Original feature y = -3.24x + 1.08 0.8919 1.0476 4.323

Correlated feature x2 y = - 5.90x +5.92x2 
     + 1.00

0.8562 1.0876 12.817

21



Effect of Correlated Features

f(x) Training error Test error 𝒘 𝟏

Ground truth y = -3x + 1 4

Original feature y = -3.24x + 1.08 0.8919 1.0476 4.323

Correlated feature x2 y = - 5.90x +5.92x2 + 1.00 0.8562 1.0876 12.817

Correlated feature x3 y = - 6.22x - 2.30x2 +17.14x3 

          + 1.08
0.8342 1.0947 26.744

Correlated feature x4 y = - 7.16x + 0.93x2 + 8.39x3 

        + 11.85x4 + 1.12
0.8257 1.1289 29.454

Correlated feature x5 y = - 7.16x + 4.50x2 + 3.52x3 

        - 6.55x4 + 25.68x5 + 1.20
0.7994 1.1465 48.615
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Suppose we add more correlated features (𝑥3, 𝑥4, 𝑥5)



Effect of Correlated Features

When model becomes overly 
complex, it is susceptible to 
overfitting problem
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Solution?



Ridge Regression

• Ridge regression shrinks the regression coefficients, so that variables, with 
minor contribution to the outcome, have their coefficients close to zero.

• The shrinkage of the coefficients is achieved by adding an L2-norm penalty 
term to the regression model, which is the sum of the squared coefficients.
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Ridge Regression

• Uses an L2-norm to regularize ||w|| 

• Objective function:

• where  is the regularization parameter

• Increasing  will reduce the weights of the model parameters

•  is typically chosen via cross-validation

• Can be solved in closed form 

Reduces to MLR solution 

when  goes to zero 
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Ridge Regression

• Effect of varying regularization parameter 𝜆

Dashed lines represent the training and test 

accuracies of MLR without correlated features
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Ridge Regression
intercept: weight associated with x0 

w1: weight associated with x1

w2: weight associated with x2

w3: weight associated with x3

w4: weight associated with x4

w5: weight associated with x5

Increasing  helps to shrink w (but 
may not be able to zero it out)

w

27the higher the lamda, the higher the bias 



Ridge Regression

• Issues

w

28the higher the lamda, the higher the bias 

• we don't want to choose big λ values because the 
coefficients will become very small and therefore they 
might not be accurately reflecting what's going on

• In other words, the higher the lamda, the lower the 
variance and the higher the bias. 

      -- underfit the target

• need to have a trade off between the variance and the 
bias



Lasso Regression
• Lasso is similar to ridge regression except it uses L1 regularization

• Uses an L1-norm to regularize ||w|| 

• Objective function:

• where  is the regularization parameter

• Increasing  will reduce the weights of the model parameters

•  is typically chosen via cross-validation

• Cannot be solved in closed form because ||w||1 is not a differentiable function
• Must be solved iteratively – longer training time (e.g., proximal gradient descent)
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Lasso Regression

• Effect of varying regularization parameter 
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Lasso Regression

• Effect of correlated features

When   0.005, weights of w3, w4, and w5 go to 0

When   0.01, weights of w2, w3, w4, and w5 go to 0 

31



L1 vs L2

32

L2 regularization mainly focuses on 
keeping the weights as low as possible

Common: The values of the weights try to be as low as 
possible to reduce penalty

L1 regularization’s shape is diamond-like. 
Corners of the diamond leads to sparse matrices 
(some axis/features will be zero).

Sparsity Smoothness



Nonlinear function

Method Test error

Linear 14.699

Ridge
𝜆 = 0.1

14.487
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Kernel Ridge Regression

• Extends ridge regression to deal with nonlinear features

• combines ridge regression (linear least squares with l2-norm regularization) 
with the kernel trick.

• where 
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replaces all data-
cases with their 
feature vector



Kernel Ridge Regression

• What if we don’t know the appropriate feature function ?
• Assume  is infinite-dimensional and then compute the regression 

function in infinite-dimensional space

• Then apply kernel trick!
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Kernel Ridge Regression

• Kernel ridge regression requires computing the dot product T in high-
dimensional space

• Kernel trick: 
𝑤 = 𝐾 + 𝜆𝐼 −1Φ⊤𝑦

• The inner product T can be computed in its original feature space (instead of some 
transformed high-dimensional feature space )

𝐾 𝑥, 𝑦 = 𝑥 ∙ 𝑦 + 1 𝑝

𝐾 𝑥, 𝑦 = 𝑒
−

𝑥−𝑦 2

2𝜎2

𝐾 𝑥, 𝑦 = tanh(𝑘𝑥 ∙ 𝑦 − 𝛿)
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Nonlinear function

Method Test error

Linear 14.699

Ridge
𝜆 = 0.1

14.487

Kernel 6.286
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Support Vector Regression

• Similar to linear regression, learn a function to 
minimize prediction error
• Disregard small errors

• User specifies 𝜖, radius of a tube around the 
regression function
• Points within this tube, error = 0

• If tube can fit all training data
• Function in the middle of the flattest tube that 

encloses them is returned

• Training error = 0

• Otherwise
• Tradeoff between prediction error and tube flatness
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Neural Networks for Regression 

• Similar network structure to classification

• Different output layer and loss function
• Classification

• Output node for each class, class predicted 
as:

• Sign function – 2 classes

• Softmax function – 3+ classes

• Regression:
• Output 1 node
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Regression Example
Predict Vehicle Miles per Gallon

• Output: MPG  (column 1)

• Input:  (columns 2-8)
• Number of cylinders

• Displacement

• Horsepower

• Weight

• Acceleration

• Model Year

• Origin
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Learn Regression Models

import numpy as np

from sklearn.model_selection import train_test_split

# Load the data

data = np.loadtxt('auto-mpg.csv', delimiter=',')

y = data[:,0]

x = data[:,1:8]

# Split into training and test

X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.5, random_state=891)
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Regression Algorithms

•Multiple Linear (Ordinary least squares)

•Ridge

• Lasso

• Kernel 

•Neural Network
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Multiple Linear / Ordinary Least Squares

from sklearn import linear_model

# Train model

reg = linear_model.LinearRegression()

reg.fit(X_train,y_train)

# View coefficients

print(reg.coef_)

[-0.65834328  0.01405478 
-0.0237873  -0.00567093 
-0.05662719  0.72666556 
0.74193786]

from sklearn.metrics import mean_squared_error

# Predict test set

y_pred = reg.predict(X_test)

print(mean_squared_error(y_test,y_pred))

 11.944338673592521
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Ridge Regression

from sklearn import linear_model

# Train model

reg = linear_model.Ridge (alpha = .5)

reg.fit(X_train,y_train)

# View coefficients

print(reg.coef_)

[-0.65183737  0.0139174  
-0.0236812  -0.0056743  
-0.05646149  0.72650549
  0.73621476]

from sklearn.metrics import mean_squared_error

# Predict test set

y_pred = reg.predict(X_test)

print(mean_squared_error(y_test,y_pred))

 11.948494405035525

alpha = 𝜆 
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Regression Algorithms

• Multiple Linear (Ordinary least squares)
• reg = linear_model.LinearRegression()

• Ridge
• reg = linear_model.Ridge (alpha = .5)

• Lasso
• reg = linear_model.Lasso(alpha = 0.1)

• Kernel 
• from sklearn.kernel_ridge import KernelRidge

• reg = KernelRidge(alpha=1.0)

• Support Vector*
• from sklearn.svm import SVR

• reg = SVR(gamma='scale', C=1.0, epsilon=0.2)

• Neural Network
• from sklearn.neural_network import 

MLPRegressor

• reg = MLPRegressor()

*Sometimes Support vector regression produces an error, use LIBSVM for Support Vector Machines 45
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