

Outline

• Text Analytics and NLP

• Compare Text Analytics, NLP and Text Mining

• Text Classification

Applications
• Customer care services

• Rapid, automated response to the customer

• Search query
• Identify most relevant webpages to a search query

• Elections/Financial Decisions
• Predict stock market or election outcome from social media posts

• Early Warnings
• Alert civilians an earthquake is inbound from social media

• False information detection
• Detect spam in email, fake news on social media

Text Analytics Vs NLP Vs Text Mining

• Text mining is a process of exploring sizeable textual data and find patterns.
o Finding frequency counts of words,
o length of the sentence,
o presence/absence of specific words.

• Natural language processing is one of the components of text mining.
• Identify sentiment,
• Finding entities in the sentence, and
• Finding category of blog/article.

• Text mining is preprocessing data for text analytics.
• In Text Analytics, statistical and machine learning algorithm used to classify

information.

Text Mining

Tokenization

Removing
Stop-word

Stemming and
Lemmatization

Bag of Word

TF-IDF

Word
Embedding

Model
Building

Model
Evaluation

Text

Pre-Processing Text Feature Engineering

Document
Representation

Text Analysis Operations using NLTK

• Document Representation:

• Applications:
• Information Retrieval
• Topic Modeling
• Semantics
• Sentiment Analysis

• NLTK helps the computer to analysis,
preprocess, and understand the
written text.

Getting started with nltk

• Open jupyter notebook

• Run this code:

import nltk

nltk.download()

Document Representation

For every NLP task:

• What are the features?
• Segment/tokenize words in running text

• How to avoid curse of dimensionality?
• Normalize word formats

• What is our unit of analysis?
• Segment sentences in running text

Document Representation

• Tokenization: process of breaking down a text paragraph into smaller chunks
such as words or sentence

• Preprocessing text:
o Case folding, special characters, and unwanted spaces.
oStopwords Removal
oLexicon Normalization such as Stemming and Lemmatization

How many words?

• I do uh main- mainly business data processing
• Fragments, filled pauses

•Seuss’s cat in the hat is different from other cats!
• Lemma: same stem, part of speech, rough word sense

• cat and cats = same lemma

• Wordform: the full inflected surface form
• cat and cats = different wordforms

How many words?
they lay back on the San Francisco grass and looked at the stars and their

• Type: an element of the vocabulary.

• Token: an instance of that type in running text.

• How many?
• 15 tokens
• 13 types

at
and
back
Francisco
grass
lay
looked
on
San
stars
the
their
they

Tokenization

• Given a text file, output the word tokens and their frequencies

• Language dependent

• Simple case:
• Replace each non-alphanumeric character with a newline character
• Alphanumeric = letters and numbers

How many words?
N = number of tokens

V = vocabulary = set of types
|V| is the size of the vocabulary

Tokens = N Types = |V|

Switchboard phone
conversations

2.4 million 20 thousand

Shakespeare 884,000 31 thousand

Google N-grams 1 trillion 13 million

Case folding

•Applications like IR: reduce all letters to lower case
• Since users tend to use lower case
• Possible exception: upper case in mid-sentence?

• e.g., General Motors
• Fed vs. fed
• SAIL vs. sail

•For sentiment analysis, Information extraction
• Case is helpful (US versus us is important)

Issues in Tokenization

• Finland’s capital → Finland Finlands Finland’s ?

• what’re, I’m, isn’t → What are, I am, is not

• Hewlett-Packard → Hewlett Packard ?

• state-of-the-art → state of the art ?

• Lowercase → lower-case lowercase lower case ?

• San Francisco→ one token or two?
• m.p.h., PhD. → ??

Normalization
• Need to “normalize” terms

• Information Retrieval: indexed text & query terms must have same form.
• We want to match U.S.A. and USA

• We implicitly define equivalence classes of terms
• e.g., deleting periods in a term

• Alternative: asymmetric expansion:
• Enter: window Search: window, windows
• Enter: windows Search: Windows, windows, window
• Enter: Windows Search: Windows

• Potentially more powerful, but less efficient

Lemmatization

• Reduce inflections or variant forms to base form
• am, are, is → be

• car, cars, car's, cars' → car

• the boy's cars are different colors → the boy car be different color

• Lemmatization: have to find correct dictionary headword form

• Machine translation
• Spanish quiero (‘I want’), quieres (‘you want’) same lemma as querer

‘want’

Morphology

• Morphemes:
• The small meaningful units that make up words

• Stems: The core meaning-bearing units

• Affixes: Bits and pieces that adhere to stems
• Often with grammatical functions

Stemming

• Reduce terms to their stems in information retrieval

• Stemming is crude chopping of affixes
• language dependent
• e.g., automate(s), automatic, automation all reduced to automat.

for example compressed
and compression are both
accepted as equivalent to
compress.

for exampl compress and
compress ar both accept
as equival to compress

Porter’s algorithm
The most common English stemmer

Step 1a
sses → ss caresses → caress
ies → i ponies → poni
ss → ss caress → caress
s → ø cats → cat

Step 1b
(*v*)ing → ø walking → walk

sing → sing
(*v*)ed → ø plastered → plaster

…

Step 2 (for long stems)
ational→ ate relational→ relate

izer→ ize digitizer → digitize

ator→ ate operator → operate
…

Step 3 (for longer stems)
al → ø revival → reviv

able → ø adjustable → adjust

ate → ø activate → activ
…

Stemming Algorithm
• Porter’s algorithm:
oOldest stemming,
oMost commonly used stemmer,
oOne of the most gentle stemmers,
oMost computationally intensive.

• Snowball(Porter2):
o An improvement over Porter,
o Slightly faster computation time than porter.

• Lancaster:
o Very aggressive stemming algorithm, sometimes to a fault,
o The stemmed representations are not usually fairly intuitive to a reader,
o The fastest algorithm of all 3,
o Reduces set of words hugely, but if you want more distinction, not the tool you would want.

Exercise
from nltk.stem.porter import *

stem = PorterStemmer()

s1 = "they lay back on the grass and looked at the stars"

s2 = "the stars glowed brightly"

t1 = nltk.word_tokenize(s1) #create list of terms in sentence 1

t2 = nltk.word_tokenize(s2) #create list of terms in sentence 2

set1 = set()

set2 = set()

for i in t1:

set1.add(stem.stem(i)) #stem each term in sentence 1

for i in t2:

set2.add(stem.stem(i)) #stem each term in sentence 2

Exercise (cont.)

• Sentence 1 = they lay back on the grass and looked at the stars

• Sentence 2 = the stars glowed brightly

• Set 1 = {they, lay, back, on, the, grass, and, look, at, star}

• Set 2 = {the, star, glow, brightli}

How many tokens?
they lay back on the San Francisco grass and looked at the stars and their

Unigram (1-Gram) Bigrams (2-Gram) Trigrams (3-Gram)

At They lay They lay back

And Lay back Lay back on

Back Back on Back on the

Francisco On the On the San

Grass The San The San Francisco

Lay San Francisco San Francisco grass

Looked Francisco grass Francisco grass and

On Grass and Grass and looked

San And looked And looked at

Stars Looked at Looked at the

The At the At the stars

Their The stars The stars and

They Stars and Stars and their

And their

• Token: an instance of that type
in running text.

• Tokens may contain more than
1 word

• N-gram: a phrase of N words

Stopwords

• Commonly used words that are
eliminated from representation of
both documents and queries

• Motivations for removal:
• High frequency – carry little semantic

weight
• Can save considerable space

Exercise: what are the English stopwords?

import nltk

from nltk.corpus import stopwords

stop = set(stopwords.words('english’))

print(stop)

Exercise

• Remove stop words from each sentence

• Sentence1: they lay back on the grass and looked at the stars

• Sentence2: the stars glowed brightly

print(set1.difference(stop))

print(set2.difference(stop))

Lay Back Grass Look Star Glow Brightli

1 1 1 1 1 0 0

0 0 0 0 1 1 1

Text Mining

Tokenization

Removing
Stop-word

Stemming and
Lemmatization

Bag of Word

TF-IDF

Word
Embedding

Model
Building

Model
Evaluation

Text

Pre-Processing Text Feature Engineering

Information Retrieval

• Return a set of documents that are relevant to a query

• Simplest form of document representation is bag-of-words
• Words are typically unigrams, but can be any length N-gram
• Each document is represented by the count of each word

• they lay back on the grass and looked at the stars

• the stars glowed brightly

They Lay Back On The Grass And Look at Star Glow Brightli

1 1 1 1 2 1 1 1 1 1 0 0

0 0 0 0 1 0 0 0 0 1 1 1

But raw frequency is a bad representation

• Frequency is clearly useful; if sugar appears a lot near apricot,
that's useful information.

But overly frequent words like the, it, or they are not very
informative about the context

Need a function that resolves this frequency paradox!

Pros and Cons of the Bag-Of-Words
Approach
• Works fine for converting text to numbers.

• It assigns a score to a word based on its occurrence in a particular
document.

• It doesn't take into account the fact that the word might also be having a
high frequency of occurrence in other documents as well.

• TF-IDF resolves this issue by multiplying the term frequency of a word by the
inverse document frequency.

https://en.wikipedia.org/wiki/Tf%E2%80%93idf

tf-idf: combine two factors
• tf: term frequency. frequency count (usually log-transformed):

• Idf: inverse document frequency: tf-
Total # of docs in collection

of docs that have word i

tf-idf value for word t in document d:

Words like "the" or "good" have very low idf

Summary: tf-idf

• Compare two words using tf-idf cosine to see if they are similar

• Compare two documents
• Take the centroid of vectors of all the words in the document
• Centroid document vector is:

Cosine for computing similarity

vi is the tf-idf for word v in context i
wi is the tf-idf for word w in context i.

Cos(v,w) is the cosine similarity of v and w

Sec. 6.3

Visualizing cosines
(well, angles)

Vectors

• TF-IDF vectors are
• long (length |V|= 20,000 to 50,000)
• sparse (most elements are zero)

• Challenge: Curse of Dimensionality

• Alternative: dense vectors
• short (length 50-1000)
• dense (most elements are non-zero)

Sparse versus dense vectors

•Why dense vectors?
• Short vectors may be easier to use as features in machine

learning (less weights to tune)
• Dense vectors may generalize better than storing explicit

counts
• In practice, they work better

35

Dense embeddings you can download!

• Word2vec (Mikolov et al.) (google)
• https://code.google.com/archive/p/word2vec/

• Fasttext (Facebook) http://www.fasttext.cc/

• Glove (Standford) (Pennington, Socher, Manning)
• http://nlp.stanford.edu/projects/glove/

https://code.google.com/archive/p/word2vec/
http://www.fasttext.cc/
http://nlp.stanford.edu/projects/glove/

Word2vec

• Popular embedding method

• Very fast to train

• Code available on the web

• Idea: predict rather than count

Word2vec

•Instead of counting how often each word w
occurs near "apricot"

•Train a classifier on a binary prediction task:
• Is w likely to show up near "apricot"?

•We don’t actually care about this task
•But we'll take the learned classifier weights as the
word embeddings

Analogy: Embeddings capture relational
meaning!

vector(‘king’) - vector(‘man’) + vector(‘woman’) ≈ vector(‘queen’)

vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) ≈ vector(‘Rome’)

39

Implementation

• Pre-trained model can be downloaded (note 1.5 GB)

• Model: GoogleNews-vectors-negative300.bin.gz

• https://code.google.com/archive/p/word2vec/

import gensim
model = gensim.models.KeyedVectors.load_word2vec_format('GoogleNews-vectors-negative300.bin.gz', binary=True)
dog = model['dog’]
print(dog[:10])
print(model.similarity('woman', 'man'))

https://code.google.com/archive/p/word2vec/

Exercise

• Download abcnews-date-text.csv from course website
• Original data from Kaggle (https://www.kaggle.com/therohk/million-

headlines/version/6)

import pandas as pd

data = pd.read_csv('abcnews-date-text.csv', error_bad_lines=False)

data_text = data[['headline_text']]

data_text['index'] = data_text.index

documents = data_text

Exercise (cont.)

import gensim

from gensim.utils import simple_preprocess

from gensim.parsing.preprocessing import STOPWORDS

from nltk.stem import WordNetLemmatizer, SnowballStemmer

from nltk.stem.porter import *

import numpy as np

np.random.seed(891)

from nltk.corpus import stopwords

stop = set(stopwords.words('english'))

conda install -c anaconda genism

Or

pip install --upgrade gensim

Stem and Lemmatize

#Create a stemmer

stemmer = SnowballStemmer(language = 'english')

#Create a lemmatizer

lemma = WordNetLemmatizer()

#Stem and lemmatize a term

def lemmatize_stemming(term):

return stemmer.stem(lemma.lemmatize(term, pos='v'))

Preprocess a sentence with stopword
removal

def preprocess(text):

result = []

for token in gensim.utils.simple_preprocess(text):

if token not in stop and len(token) > 3:

result.append(lemmatize_stemming(token))

return result

Preprocess 1 Document
• Pick a number between 0 and 1,103,664. Set k to that number
k = 43

doc_sample = documents[documents['index'] == k].values[0][0]

print('original document: ')

words = []

for word in doc_sample.split(' '):

words.append(word)

print(words)

print('\n\n tokenized and lemmatized document: ')

print(preprocess(doc_sample))

Preprocess all documents

processed_docs = documents['headline_text'].map(preprocess)

• Create a dictionary – word and its frequency in all documents

dictionary = gensim.corpora.Dictionary(processed_docs)

• Filter out infrequent terms appearing less than N times (no_below=N), terms appearing in
more than 50% of documents (no_above=0.5), and keep only the top 100,000 terms
(keep_n=100000)

dictionary.filter_extremes(no_below=15, no_above=0.5, keep_n=100000)

Exercise (cont.)

• Convert dictionary to document – bag of words matrix

bow_corpus = [dictionary.doc2bow(doc) for doc in processed_docs]

Topic Modeling

• Latent Dirichlet Allocation (LDA) is an unsupervised generative model to
model a corpus of documents given the observed words are generated from
hidden underlying topics

• Applications
• Clustering
• Queries
• Dimension reduction
• Classification (extension of LDA)

Probabilistic Modeling

• Modeling a document as a probability
• Naïve Bayes

• P(Y | X) =
𝑃𝑃 𝑋𝑋 𝑌𝑌 𝑃𝑃(𝑌𝑌)

𝑃𝑃(𝑋𝑋) Bayes Rule

• P(X|Y) = ∏𝑚𝑚=1
𝑀𝑀 𝑃𝑃 𝑥𝑥𝑚𝑚 𝑌𝑌 Conditional Independence

• Unsupervised Case: probability of a document
• 𝑃𝑃 𝐷𝐷 = 𝑃𝑃 𝑊𝑊 𝐷𝐷 𝑃𝑃 𝑊𝑊
• 𝑃𝑃 𝑊𝑊 𝐷𝐷 = ∏𝑖𝑖=1𝑃𝑃 𝑤𝑤𝑖𝑖 𝐷𝐷

Bayesian Network
• Graphical representation of

probabilistic model

• Each Node is a variable
• Shaded = observed
• Unshaded = hidden

• Each Plate is a set of variables
of the same type
• Small plate is all words
• Large plate is all documents

d

w
N

M

d

w

z

N
M

P(D,W) = ∏𝑝𝑝(𝑑𝑑𝑖𝑖) ∗ 𝑝𝑝(𝑊𝑊|𝑑𝑑𝑖𝑖)
= ∏𝑖𝑖=1

𝑀𝑀 𝑝𝑝(𝑑𝑑𝑖𝑖)∏𝑗𝑗
𝑁𝑁 𝑝𝑝(𝑤𝑤𝑗𝑗|𝑑𝑑𝑖𝑖)

P(D,W,Z) =
∏𝑖𝑖=1
𝑀𝑀 𝑝𝑝(𝑑𝑑𝑖𝑖)∏𝑗𝑗

𝑁𝑁 𝑝𝑝 𝑧𝑧𝑗𝑗 𝑑𝑑𝑖𝑖 𝑝𝑝(𝑤𝑤𝑗𝑗|𝑧𝑧𝑗𝑗)

Probabilistic Latent Semantic Indexing (pLSI)

• In reality, words are not
independent of each other within
the same document
• Often words relate to similar

topics/themes
• Other words present regardless

of topic

• Extend model to include topic
information
• This model is a simple

Topic Model
P(D,W,Z) =
∏𝑖𝑖=1
𝑀𝑀 𝑝𝑝(𝑑𝑑𝑖𝑖)∏𝑗𝑗

𝑁𝑁 𝑝𝑝 𝑧𝑧𝑗𝑗 𝑑𝑑𝑖𝑖 𝑝𝑝(𝑤𝑤𝑗𝑗|𝑧𝑧𝑗𝑗)

d

w

z

N

M

Latent Dirichlet Allocation (LDA)

Extension of pLSI

Each document has a distribution of
topics

Each topic has a distribution of words
β

φ
K

θ

α

w

z

N

M

	Text Mining
	Outline
	Applications
	Text Analytics Vs NLP Vs Text Mining
	Text Mining
	Text Analysis Operations using NLTK
	Document Representation
	Document Representation
	How many words?
	How many words?
	Tokenization
	How many words?
	Case folding
	Issues in Tokenization
	Normalization
	Lemmatization
	Morphology
	Stemming
	Porter’s algorithm�The most common English stemmer
	Stemming Algorithm
	Exercise
	Exercise (cont.)
	How many tokens?
	Stopwords
	Exercise
	Text Mining
	Information Retrieval
	 But raw frequency is a bad representation
	Pros and Cons of the Bag-Of-Words Approach
	tf-idf: combine two factors
	Summary: tf-idf
	Cosine for computing similarity
	Visualizing cosines �(well, angles)
	Vectors
	Sparse versus dense vectors
	Dense embeddings you can download!
	Word2vec
	Word2vec
	Analogy: Embeddings capture relational meaning!
	Implementation
	Exercise
	Exercise (cont.)
	Stem and Lemmatize
	Preprocess a sentence with stopword removal
	Preprocess 1 Document
	Preprocess all documents
	Exercise (cont.)
	Additional Material
	Topic Modeling
	Probabilistic Modeling
	Bayesian Network
	Probabilistic Latent Semantic Indexing (pLSI)
	Latent Dirichlet Allocation (LDA)

