Cluster Analysis

Unsupervised Learning

Task 1 : Group These Set of Document into 3 Groups based on meaning

Doc1 : Health , Medicine, Doctor

- Doc 2 : Machine Learning, Computer
- Doc 3 : Environment, Planet
- Doc 4 : Pollution, Climate Crisis
- Doc 5 : Covid, Health , Doctor

Task 1 : Group These Set of Document into 3 Groups based on meaning

Doc1 : Health , Medicine, Doctor

Doc 5 : Covid, Health , Doctor

Doc 3 : Environment, Planet Doc 4 : Pollution, Climate Crisis

Doc 2 : Machine Learning, Computer

г	Supervised Learning	Unsupervised Learning	
Discrete	classification or categorization	clustering	

Definition

•Cluster analysis: groups data objects based on information found in the data that describes object relationships

•Goal:

- Objects within a group are similar/related
- Objects in different groups are different/unrelated
- •Applications:
 - Clustering for understanding
 - Clustering for utility: as a starting point for other purposes
 - Clustering for outlier detection

Applications

•Customer Relationships:

- Divide customers into groups according to their business patterns
- Develop campaigns to target each group specifically
- •Credit Card Customers:
 - Evaluate features and profit contributions of different customers

Information Retrieval:

- Group similar search results together: More effective presentation for users than flat list (specifically when a term has more than one meaning):
- Group similar documents in entire collection: Improve search results

Applications

- •Summarization:
 - Techniques with high complexity such as PCA/Regression
 - Instead of applying technique to a large dataset, pick a prototype for each cluster
- •Compression:
 - Vector quantization of images, audio and video data
- •Nearest Neighbor:
 - Instead of computing all pairwise distances, only compute distance to prototypes
 - Rational: If an object is far from the prototype of a cluster, it is far from all points in the cluster

Clustering Examples

Original Points

Two Clusters

Six Clusters

Challenges

- •Scalability
- Ability to deal with different types of attributes
- •Ability to discover clusters with different shapes
- •Ability to deal with noisy data
- Incremental/Insensitivity to input order
- •Capability for dealing with high dimensions
- •Ability to handle constraints
- Interpretability

Clustering Types

- •Hierarchical vs Partitional:
 - Partitional: divides data points into non-overlapping subsets
 - Hierarchical: divides into nested clusters, organized as tree

Clustering Types

- •Exclusive vs Overlapping vs Fuzzy
 - Exclusive: each object belongs to one cluster
 - **Overlapping**: an object can simultaneously belong to multiple groups
 - Fuzzy: each object belongs to each cluster with a given weight between 0 (does not belong) and 1 (definitely belongs)
 - Weights must sum to 1

•Complete vs Partial

- Complete: every object is assigned to a cluster
- Partial: some objects (noise for example) may not be assigned to a cluster

•Well-Separated: each object is closer to every other object in its cluster than any object in another cluster

- Sometimes a threshold is used to specify that all the objects in a cluster must sufficiently close to one another.
- Definition of a cluster is satisfied only when the data contains natural clusters. These clusters can have any shape.

•**Prototype-Based**: each object is closer to the prototype (center) that defines the cluster than to the prototype of any other cluster

- If the data is numerical, the prototype of the cluster is often a **centroid** i.e., the average of all the points in the cluster.
- If the data has categorical attributes, the prototype of the cluster is often a **medoid** i.e., the most representative point of the cluster.
- These clusters tend to be globular (spherical shape)

•Contiguity based: each object is closer to some point in its cluster than any other point outside its cluster

- nearest neighbor or transitive clusters
- when data is represented as a graph, a cluster is defined as a connected component which is a group of points that are connected to each other but has no connections to points outside of the group.
- 2 points are connected only if they are within a specified distance of each other
- Useful when clusters are irregular and intertwined.
- This does not work efficiently when there is noise in the data. For example, a small bridge of points can merge two distinct clusters into one.

•Density-Based: a cluster is a dense region surrounded by a region of low density

- Density based clusters are employed when the clusters are irregular, intertwined and when noise and outliers are present.
- Points in low density region are classified as noise and omitted.

•Conceptual-Based: points in the cluster share some general property

In all the previous clustering techniques:

- provide a number of clusters
- clusters are relatively arbitrary
- if you want to understand them better you need to go in and figure out what the clusters really "mean".

In conceptual clustering,

- provide it with a list of concepts and any info and requirements needed for an item to fit in that concept.
- The algorithm creates a structure (usually heiarchal) that defines how those concepts interact and what points belong to which concepts.

Techniques

Method	Algorithms
Partitioning	K-Means
Hierarchical	Agglomerative Hierarchical Clustering
Density	DBSCAN

K-Means

•*k*-means clustering aims to <u>partition</u> *n* observations into *k* clusters

- each observation belongs to the <u>cluster</u> with the nearest <u>mean</u>
- cluster centers or cluster <u>centroid</u> serves as a prototype of the cluster
- *k*-means clustering minimizes within-cluster variances

•K: user-specified parameter

How to choose Number of K?

K-Means

Example

K-Means

•K: user-specified parameter

Select k points as initial centroids

Repeat

Form k-clusters by assigning each point to the

closest centroid

Recompute the centroid of each cluster

Until small enough change

Weaker condition for stopping: for example: until only 1% of points change clusters

Finding the closest centroid

•Proximity measures to quantify the notion of "closest"

•Euclidean distance: $d(a,b) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2 + \dots + (a_n - b_n)^2}$

•Manhattan distance: $d(a,b) = \sqrt{|a_1 - b_1| + |a_2 - b_2| + \dots + |a_n - b_n|}$

Suitable for points in Euclidean space

•Cosine similarity measure:

$$\cos(a,b) = \frac{\sum_{i}^{j} a_{i} b_{i}}{\|a\| \|b\|}$$

•Jaccard measure: (for binary data) J

$$=\frac{f_{11}}{f_{10}+f_{01}+f_{11}}$$

 $\sum a b$

Suitable for documents and binary data

Re-computing the centroid

•Goal of clustering: expressed by an objective function

•When objective function is given: centroid can be computed mathematically

•Sum of Squared Error:

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

• The mean of the cluster minimizes SSE

•Document Data:

Total Cohesion =
$$\sum_{i=1}^{k} \sum_{x \in C_i} \operatorname{cosine}(x, c_i)$$

Choosing initial centroids

(1) Random initialization:

Different initial points result in different final clusters

Try different random runs and select best one. Might not always generate a good choice

Choosing initial centroids

(2) Well separated initial centroids:
Select initial centroid randomly.
Then successively select farthest
point from centroid as the next
centroid. Might select outliers as
centroids

28

Empty Clusters

•Empty clusters may be obtained if no points are allocated to a given cluster

- •Will increase the squared error unnecessarily
- •Approaches:
 - 1. Choose a new centroid from the cluster that has the highest SSE

This will split the cluster and reduce the SSE

2. Choose a point that is farthest away from any cluster centroid

Outliers

- •Unnecessarily increase the error
- •Not as representative as without outliers
- •Useful to eliminate outliers beforehand

Post-Processing

- Increase number of clusters to reduce SSE
 - Split a cluster: usually with the largest SSE
 - Introduce a new centroid: the point farthest from any centroid
- •Reduce number of clusters while trying to minimize SSE
 - Disperse a cluster: remove its centroid, reassign its points to closest clusters
 - Merge two clusters: merge clusters with closest centroids or that result in smallest SSE increase

Assumptions made by K-means

All clusters are the same size.(Area not Cardinality)

K-means

Assumptions made by K-means

Clusters have the same extent in every direction.

K-means

Assumptions made by K-means

Clusters have similar numbers of points assigned to them

K-means

Weaknesses

•Can't well detect natural clusters when clusters have:

- Non-spherical shapes
- Widely different sizes
- Widely different densities

Clusters with different shapes

Clusters with different densities

(a) Original points.

(b) Three K-means clusters.

Clusters with different sizes

(a) Original points.

(b) Three K-means clusters.

Increasing number of clusters

Increasing number of clusters

Increasing number of clusters

Strengths

- •Efficient
- Converges relatively quickly
- •Can be used with a variety of data

Variations

•Kmeans ++:

- Improves K-Means by selecting initial cluster centers more strategically
- •K-medoid:
 - Partitionning around medoid, PAM
 - ° More efficient than k-means in presence of outliers and noise
 - The complexity of each iteration is more costly than k-means

Update centroids

- Unlike k-means, where centroids can be any point in space, a medoid is an actual data point within the dataset
- Initially, the k medoids are randomly selected from the dataset. The algorithm then iteratively replaces non-medoid points with medoids that minimize the total dissimilarity within the cluster
- This process continues until the medoids converge and the clusters stabilize.

Variations

Clustering Large Applications (CLARA)

- $^{\circ}$ Apply PAM on a sample of the original set
- Performance depends on sampled medoids (how close to best medoids)

Insurance Fraud Data

Case	Age	Gender	Claim	Tickets	Prior Claims	Attorney	Outcome
1	1	1	0.6	1	0.5	0	ОК
2	0.9	1	0.64	1	1	1	ОК
10	0.3	0	0.48	0.6	1	1	Fraudulent

Normalize data

Tickets: 1: more than 2 0.6: 1 ticket 0: 0 ticket Prior claims: 0: no claims 0.5: 1 claim 1: 2 or more claims Gender: 1 for Male, 0 for Female

Claim amount: (claim -MIN)/(MAX-MIN)

Insurance Fraud Data

Select randomly 1 fraudulent and 1 ok claims as centroids

Cluster	Age	Gender	Claim	Tickets	Prior Claims	Attorney	Outcome
1	1	1	0.6	1	0.5	0	0.0
2	0.05	0	0.0	0.6	0	0	1.0

Find distances from each point to each centroid and assign point to cluster

Repeat for iterations 2, 3, ... until convergence

Training Case	Cluster 1	Cluster 2	Outcome
1	0	2.673	Cluster 1
2	1.262	4.292	Cluster 1
3	2.673	0	Cluster 2
4	2.170	2.030	Cluster 2
5	2.328	2.137	Cluster 2
6	0.604	1.927	Cluster 1
7	1.280	4.094	Cluster 1
8	2.133	2.020	Cluster 2
9	3.270	2.710	Cluster 2
10	2.754	3.653	Cluster 1

Image Segmentation

Segmentation is to partition an image into regions each of which has a reasonably homogeneous visual appearance or which corresponds to objects or parts of objects

How to use

sklearn.cluster.KMeans

class sklearn.cluster.KMeans(n_clusters=8, *, init='k-means++', n_init=10, max_iter=300, tol=0.0001, verbose=0, random_state=None, copy_x=True, algorithm='auto')

[source]

```
>>> from sklearn.cluster import KMeans
>>> import numpy as np
>>> X = np.array([[1, 2], [1, 4], [1, 0],
... [10, 2], [10, 4], [10, 0]])
>>> kmeans = KMeans(n_clusters=2, random_state=0).fit(X)
>>> kmeans.labels_
array([1, 1, 1, 0, 0, 0], dtype=int32)
>>> kmeans.predict([[0, 0], [12, 3]])
array([1, 0], dtype=int32)
>>> kmeans.cluster_centers_
array([[10., 2.],
        [1., 2.]])
```

```
# Importing the dataset
dataset = pd.read_csv('../input/Mall_Customers.csv',index_col='CustomerID')
```

dataset.head()

	Genre	Age	Annual_Income_(k\$)	Spending_Score
CustomerID				
1	Male	19	15	39
2	Male	21	15	81
3	Female	20	16	6
4	Female	23	16	77
5	Female	31	17	40

```
# Using the elbow method to find the optimal number of clusters
from sklearn.cluster import KMeans
wcss = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)
    kmeans.fit(X)
    # inertia method returns wcss for that model
    wcss.append(kmeans.inertia_)
```

```
plt.figure(figsize=(10,5))
sns.lineplot(range(1, 11), wcss,marker='o',color='red')
plt.title('The Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()
```



```
# Fitting K-Means to the dataset
kmeans = KMeans(n_clusters = 5, init = 'k-means++', random_state = 42)
y_kmeans = kmeans.fit_predict(X)
```

```
# Visualising the clusters
plt.figure(figsize=(15,7))
sns.scatterplot(X[y_kmeans == 0, 0], X[y_kmeans == 0, 1], color = 'yellow', label = 'Cluster 1',
s=50)
sns.scatterplot(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], color = 'blue', label = 'Cluster 2',s=
50)
sns.scatterplot(X[y_kmeans == 2, 0], X[y_kmeans == 2, 1], color = 'green', label = 'Cluster 3',s
=50)
sns.scatterplot(X[y_kmeans == 3, 0], X[y_kmeans == 3, 1], color = 'grey', label = 'Cluster 4',s=
50)
sns.scatterplot(X[y_kmeans == 4, 0], X[y_kmeans == 4, 1], color = 'orange', label = 'Cluster 5',
s=50)
sns.scatterplot(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], color = 'red',
                label = 'Centroids', s=300, marker=', ')
plt.grid(False)
plt.title('Clusters of customers')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.legend()
plt.show()
```

