
Hierarchical Clustering



•Hierarchical clustering is a method of cluster analysis which seeks to 
build a hierarchy of clusters
• Clusters are nested

• Each object may belong to multiple nested clusters

•Agglomerative:
• Start with each point being its own cluster

• Merge the closest pairs of clusters

•Divisive: 
• Start with all points belonging to one cluster

• Split clusters until each cluster contains a single object 

Hierarchical Clustering
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Representation
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Dendrogram: 
• shows the hierarchical relationship between objects. 
• Most commonly used

Nested cluster diagramDisplays the objects in the order in which 
they were merged



Compute the proximity matrix, if necessary

Repeat
Merge the closest two clusters

Update the proximity matrix to reflect the proximity between the 
new cluster and the original clusters

Until one cluster remains

Agglomerative Hierarchical Clustering
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Need a proximity measure



Example
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Proximity between Clusters
Which two clusters are the closest?
What is the distance between C1 and C3?

C1

C2

C3
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Proximity between Clusters
MIN (Single Link): 

Cluster proximity is defined as the proximity between the closest 
two points in different clusters
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Proximity between Clusters
MAX: 

Cluster proximity is defined as the proximity 
between the farthest two points in different clusters
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Proximity between Clusters
Group Average: 

Cluster proximity is defined as the average pairwise 
proximities of all pairs from different clusters
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Proximity between Clusters
Centroid method: 

Cluster proximity is defined as proximity between 
clusters centroids
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Proximity between Clusters
Ward’s Method: 

Represents each cluster by its centroid
Measures proximity in terms of increase in the SSE
-- merge the pair of clusters that minimizes the total within-group 
error (sum of squares) between each point and centroid.
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Suppose I merge C1 and C3,
I estimate the SSE for C1+C3

Alternatively, I merge C2 and C3,
I estimate the SSE for C2+C3

Ward’s method will choose to merge the pair
that leads to smallest SSE



Example
Points coordinates in 2D space

Euclidean distances between each pair
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MIN - Proximity

dist({3,6}, {1}) = min (dist(3, 1), dist(6, 1)) = dist(3, 1) = 0.22
dist({3,6}, {4}) = min (dist(3, 4), dist(6, 4)) = dist(3, 4) = 0.15
dist({3,6}, {2,5}) = min (dist(2, 3), dist(2, 6), dist(5, 3), dist(5, 6) ) 
                             =dist(2, 3)= 0.15 
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Strength of MIN

Original Points Two Clusters

Handles non-elliptical shapes
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Limitations of MIN

Original Points Two Clusters

Sensitive to noise and outliers
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MAX - Proximity

dist({3,6}, {2,5}) = max (dist(2, 3), dist(2, 6),
dist(5, 3), dist(5, 6) )

= max (0.15, 0.25, 0.28, 0.39) 
= 0.39 

dist({3,6}, {4}) = max (dist(3, 4), dist(6, 4))
= max (0.15, 0.22) = 0.22 

dist({3,6}, {1}) = max (dist(3, 1), dist(6, 1))
= max (0.22, 0.23) = 0.23 
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Two Clusters

Strength of MAX

Original Points

Less susceptible to noise and outliers
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Limitations of MAX

Original Points Two Clusters

•Tends to break large clusters

•Biased towards globular clusters
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Group Average - Proximity

dist({3,6,4}, {1}) = (dist(3, 1) + dist(6, 1) + 
dist(4, 1)) / 3*1= 0.28

dist({2,5}, {1}) = (dist(2, 1) + dist(5, 1) ) / 
(2*1) = 0.2889

dist({3,6,4}, {2,5}) = (dist(3, 2) + dist(3, 5) 
+ dist(6, 2) + dist(6, 5) + dist(4, 2) + 
dist(4, 5)) / (3*2)= 0.26
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Group Average Characteristics
•Compromise between Single and Complete Link

•Less susceptible to noise

•Biased towards globular clusters
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Ward’s Method- Proximity
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This entire cumbersome procedure 
makes it practically impossible to 
perform by hand

Centroid Methods

•Less susceptible to noise

•Biased towards globular clusters



•Lack of global objective function, repeatedly decide locally

•Does not require a certain number of clusters 

•Ability to handle different cluster sizes

•Merging decisions are final
• When a point is assigned to a cluster, it does not get reassigned in a 

subsequent step
• Problematic with noisy data

•Expensive in terms of computational time and storage requirement:
• N2 storage: since we maintain a proximity matrix
• N3 time: since we run it for N steps and each time we search N2 matrix

Agglomerative Approach Summary
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Divisive Clustering: a top-down clustering approach

1. Initially, all points in the dataset belong to one single cluster.

2. Repeat
Partition the cluster into two least similar cluster (cluster with the largest 
SSE value)

3. Until only singleton clusters remain, or the desired number of clusters 
is obtained.

Divisive Clustering

23



Minimum Spanning Tree (MST):
◦ A spanning tree is a subgraph that is a tree connecting all points of a graph

◦ A graph has many spanning trees

◦ Define: Cost = the sum of weights of its edges

◦ A minimum spanning tree is spanning tree with minimum total cost 

Divisive Clustering - MST
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Spanning Tree
Cost = 2+4+7+5 = 18



Minimum Spanning Tree (MST):

Divisive Clustering - MST
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Spanning Tree MST
Cost = 2+2+4+3 = 11

• The problem: how to find the minimum length spanning tree.
• Example question: You want to connect several computers with a network, and you 

want to run as little wire as possible. 

• undirected graph G with vertices for each computer
• weights on the edges giving the distance u and v
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◦ Input: N data points (as nodes) and the distance between them (weight 
of edges)
◦ Distance may be an actual distance, or some abstract representation of how dissimilar two things 

are. 

◦ Goal: Divide the N data points up into k groups so that the minimum 
distance between items in different groups is maximized.

Divisive Clustering - MST



1. Compute a minimum spanning 
tree for the dissimilarity graph

2. Repeat
Create a new cluster by breaking 
the link corresponding to the 
largest dissimilarity

3. Until only singleton clusters remain

MST Clustering
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Example
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Minimum Spanning Tree (MST) – Not implemented in sklearn
https://github.com/jakevdp/mst_clustering



Example
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Clusters derived from the minimum spanning tree, by 

removing all graph edges larger than the 

specified cutoff_scale  parameter (cutoff_scale = 2). 

Points which remain connected after the truncation are given 

the same label.



MST Clustering with background noise
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cutoff_scale=1, min_cluster_size=10 cutoff_scale=1 



•Bottom up (agglomerative): 
• Clustering decision based on local patterns

• Does not take into account global distributions

• Merging decisions are final

•Top down (divisive):
• Early decisions use information based on global distribution

• Challenge: how to partition a cluster into 2 smaller clusters? 

• 2n-1 -1 possibilities so heuristics are used

• Splitting decisions are final 

Agglomerative vs Divisive
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ID Major Degree Salary (K) Years

S1 CS MS 48 2

S2 EE MS 51 2

S3 CS BS 38 1

S4 CS MS 85 4

S5 EE BS 41 3

S6 CS MS 90 5

S7 CS MS 48 1

S8 Cs MS 48 3

Example – Single Link (MIN) Agglomerative 
Clustering
Yearly income with different education levels and work experience
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Cluster ID Salary

C1 38

C2 41

C3 48

C4 48

C5 48

C6 51

C7 85

C8 90

Example
Cluster based on salary attribute
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C1 C2 C3 C4 C5 C6 C7 C8

C1 0

C2 3 0

C3 10 7 0

C4 10 7 0 0

C5 10 7 0 0 0

C6 13 10 3 3 3 0

C7 47 44 37 37 37 34 0

C8 52 49 42 42 42 39 5 0

Example
Compute pairwise distances
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C1 C2 C345 C6 C7 C8

C1 0

C2 3 0

C345 10 7 0

C6 13 10 3 0

C7 47 44 37 34 0

C8 52 49 42 39 5 0

Example
Merge closest clusters (MIN) and recompute cluster distances
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C12 C345 C6 C7 C8

C12 0

C345 7 0

C6 10 3 0

C7 44 37 34 0

C8 49 42 39 5 0

Example
Merge again and recompute cluster distances
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Repeat until only one cluster is obtained



Example
Results

S4 CS MS 85 4

S6 CS MS 90 5

ID Major Degree Salary (K) Years

S3 CS BS 38 1

S5 EE BS 41 3

S1 CS MS 48 2

S7 CS MS 48 1

S8 CS MS 48 3

S2 EE MS 51 2

C12

C3456

C78
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•K-Means
•sklearn.cluster.KMeans

•Hierarchical (sklearn.cluster.AgglomerativeClustering)
•Min Proximity (linkage: “single”)

•MaxProximity (linkage: “complete”)

•GroupAverage(linkage: “average”)

•Centroid (Ward’s Method) (linkage: “ward”)

•Minimum Spanning Tree (MST) –Not implemented in sklearn
•https://github.com/jakevdp/mst_clustering

Coding
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from sklearn.datasetsimport load_digits

digits = load_digits()

digits.data.shape

# Visualize 1 sample

x = digits.data[0]

axprops= dict(xticks=[], yticks=[])

barprops= dict(aspect='auto', cmap=plt.cm.binary, interpolation='nearest')

fig = plt.figure()

ax1 = fig.add_axes([0, 0, 0.5, 0.8], **axprops) #axes denoted as: [left bottom width height]

ax1.imshow(x.reshape((8,8)), **barprops)

Example 1 –Digits
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from sklearn.clusterimport AgglomerativeClustering

cls= AgglomerativeClustering(linkage='complete', n_clusters=10)

cls.fit(digits.data)

y_cls= cls.labels_

plt.scatter(xt[:,0],xt[:,1],c=y_cls)

plt.show()

Example 1 –Digits -Hierarchical
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Example 1 –Digits -Hierarchical

42



Example 1 –Digits -Hierarchical
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https://scikit-learn.org/0.24/auto_examples/cluster/plot_digits_linkage.html



from sklearn.datasetsimport make_moons

Xm, y = make_moons(200, noise=.05, random_state=0)

plt.scatter(Xm[:, 0], Xm[:, 1], s=50, cmap='viridis');

Example 2 -Moons
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# Improve by specifying a sample is only connected to its 10 nearest neighbors

from sklearn.neighborsimport kneighbors_graph

connectivity = kneighbors_graph(Xm, n_neighbors=10, include_self=False)

connectivity = 0.5 * (connectivity + connectivity.T)

cls= AgglomerativeClustering(linkage='ward', n_clusters=2, connectivity=connectivity)

cls.fit(Xm)

y_cls= cls.labels_

plt.scatter(Xm[:,0],Xm[:,1],c=y_cls)

plt.show()

Example 2 –Moons -Clustering
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