
Density-Based Clustering



Partitioning methods (K-means) and hierarchical clustering
◦ Suitable for finding spherical-shaped clusters

◦ They are also severely affected by the presence of noise and outliers in the data

Density based clustering 
◦ identify clusters of any shape in data set containing noise and outliers

Introduction

2



•A cluster is a dense region of objects surrounded by a region of low 
density

Definition
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High density regions

Low density region



Example
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The data set contains a high 
density cluster surrounded by 
a low density cluster



K-Means Result
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Random centroids run 1 Random centroids run 2

K-means does not find the natural clusters in the data



Hierarchical Clustering Result
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Single Link (Min) Complete Link (Max)



Hierarchical Clustering Result
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Centroid Group Average



•Center-Based approach
• density is estimated for a particular point in the dataset by 

counting the number of points within a particular radius

• data driven approach

•Grid Based approach
◦ Partition the whole space into cells with grids and then merge the cells 

to build clusters.

◦ data and space driven approach

Density Based Approaches
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•Need a density measure

•Center-based approaches:
•Density for particular point is the number of points 

within a specified radius, including the point itself

Center Based Approaches
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•Density depends on the given radius

•How does radius affect the density?

Center Based
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Density increases with radius
• If radius is large enough: all points will have the same density, n
• If radius is too small: all points will have density of 1



•The center-based approach classifies a point as being:

• Core point: if its density within a given Radius (eps) exceeds or equal to a 
certain threshold MinPts
• The interior of a dense region

• Border point: not core point, but falls in the neighborhood of a core point
• On the edge of a dense region

• Noise point: any point that is not a core point nor a border point

Center Based
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Center Based

12

MinPts = 5

Point Density
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B 4

C 3



DBSCAN Algorithm
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Given the previous definitions of points, we introduce DBSCAN algorithm
one of the most popular algorithm for density-based clustering analysis

Any two core points that are close enough, within a distance Eps of one another, are put in the same cluster

Any border point that is close enough to a core point is put in the same cluster as that core point.



DBSCAN: Core, Border and Noise Points

Original Points Point types: core, border 
and noise

Eps = 10, MinPts = 4



DBSCAN

15

DBSCAN Animation at https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/

https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/


•If data set consists of n points:
• Time needed: O(n*time to find points within radius Eps)

• In the worst case: O(n2)

• May be optimized to (nlog(n)) in low dimensions

• Space needed: O(n)
• Only keep small amount of information about each point (point type and 

cluster label)

Time and Space Complexity
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•Unlike to K-means, density-based does not require the user to specify 
the number of clusters to be generated

•Eps and MinPts – How to select?

•The basic approach is to look at the behavior of the distance from a 
point to its k nearest neighbor
• K-dist: the distance from each point to its kth nearest neighbor

• If points belong to the same cluster: k-dist is small

• For noise points: k-dist is large

Parameter Selection
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•if we compute the k-dist for all the data points for some k, sort them in 
increasing order, and then plot them, we expect to see a sharp change at the 
value of k-dist that could be a suitable Eps.

Parameter Selection
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Basic Implementation
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Generate Data



Basic Implementation (cont.)
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fig, axes = plt.subplots(3, 1, figsize=(10, 12))
dbs = DBSCAN(eps=0.3)
for idx, scale in enumerate([1, 0.5, 3]):
    dbs.fit(X * scale)
    plot(X * scale, dbs.labels_, parameters={"scale": scale, 
"eps": 0.3}, ax=axes[idx])

A eps value (0.3) works for this dataset

But fails when applied 

to rescaled versions of 

the dataset 



For a given k:

1. Compute the k-dist for all points

2. Sort them in increasing order

3. Plot the sorted values

A sharp change at the value of k-dist that corresponds to a 
suitable Eps value

4. Select this distance as Eps

5. Select k as MinPts

Parameter Selection
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Parameter Selection
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Sample data (3000 pts) K-dist plot

MinPts = 4  Eps = 10



The value selected for Eps depends on K (minPts)

If k is too small: noise may be treated as core clusters

If k is too large: small clusters may be labeled as noise

Parameter Selection
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Parameter Selection
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• There is no automatic way to determine the MinPts value for DBSCAN. 
• Ultimately, the MinPts value should be set using domain knowledge and 

familiarity with the data set. 

• From experience, here are a few rules of thumb for selecting the MinPts value:
- The larger the data set, the larger the value of MinPts should be
- If the data set is noisier, choose a larger value of MinPts
- Generally, MinPts should be greater than or equal to the dimensionality of the data 
set
   If your data has d dimensions, choose MinPts = 2*dim
   For 2-dimensional data, we use MinPts = 4.



•Resistant to noise

•Can handle clusters of arbitrary shapes and sizes

•Trouble with high dimensional data because density is difficult to 
define

•Expensive: requires computation of all pairwise proximities

Characteristics
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•When densities vary widely, may not find suitable clusters

Characteristics
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A B C D

noise noise

Reduce density threshold so C and 
D are found as clusters

Clusters A and B and noise 
surrounding them will be found 
as one cluster

Increase density threshold so clusters A 
and B are found and surrounding noise 
is dropped  

Clusters C and D will be considered 
noise



•Produces partitional clustering

•Number of clusters is determined by the algorithm

•Points in low density regions are eliminated

 => Partial clustering

Characteristics

27



•Split each attribute into a number of contiguous intervals
• Assumption: attributes are ordinal, interval or continuous

1. Define a set of grid cells

2. Assign each object to the appropriate cell and compute the density of 
each cell

3. Eliminate cells having densities below a certain threshold T

4. Form clusters from contiguous groups of cells 

Grid-Based Density Clustering
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Example
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Point counts for each cell

Grid-based assignment



•Many ways to split attribute values into a number of contiguous intervals
• Split into equal width intervals

• Split into equal frequency

• Use clustering

Defining grid cells
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X1
X2

Y1

Y2

X1 X2

Y1

Y2

Y3 Cells have the 
same volume

Cells may have 
different volumes



•Natural definition: number of points divided by the volume (per 
amount of space)
• Number of road signs per mile (1-dimensional)

• Number of eagles per square kilometer of habitat (2-dimensional)

• Number of molecules per cubic centimeter (3-dimensional)

•If all cells have the same volume:
• Number of points per space is equivalent to number of points per cell

Density of a cell
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•Efficient: 
• One pass needed for assignment and counts

• Need to store only non-empty cells

•Expensive in high dimensional data

•Depends on choice of threshold T
• If T is too low: cells that should be separated will be joined

• If T is too high: clusters will be lost

•Depends on cell size and splits: subdivision of attributes into intervals

Strengths and Limitations
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•Rectangular grids do not accurately capture 
spherical shapes

•Make the grid finer but this may show more 
fluctuation since points inside the cells may not 
be evenly distributed

Strengths and Limitations
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CLIQUE (CLustering in QUEst): It is a density-based and grid-based subspace 
clustering algorithm: 
• Grid-based: It discretizes the data space through a grid 

• Density-based: A cluster is a maximal set of connected dense units in a subspace 

• Subspace clustering: A subspace cluster is a set of neighboring dense cells in a 
subspace. 

• It automatically find subspaces of a high dimensional data space that allow better 
clustering than the original space using the apriori principle.

Techniques for Grid-Based Clustering
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•R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. SIGMOD'98



Data Cases - Subspace
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Example of CLIQUE
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•Apriori principle: If a collection of points S is a cluster in a k-dimensional space, then S is 
also part of a cluster in any (k-1) dimensional projections of this space



Example
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Example
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Install pyclustering library

conda install -c conda-forge pyclustering

Documentation: https://pypi.org/project/pyclustering/

Implementation: pyclustering.cluster.clique
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https://pypi.org/project/pyclustering/


Exercise: Parameter selection for Digits

• Load Data

• For given k (min_samples)
• Compute the k-dist for all points

• Sort them in increasing order

• Plot the sorted values
• A sharp change at the value of k-dist that 

corresponds to a suitable Eps

• Select this distance as Eps

• Select k as MinPts

from sklearn.datasets import load_digits

from sklearn.manifold import TSNE

digits = load_digits()

digits.data.shape

tsne = TSNE(n_components=2)

xt = tsne.fit_transform(digits.data)
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