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Abstract. Suturing technical skill scores are strong predictors of pa-
tient functional recovery following robot-assisted radical prostatectomy
(RARP), but manual assessment of these skills is a time and resource-
intensive process. By automating suturing skill scoring through computer
vision methods, we can significantly reduce the burden on healthcare
professionals and enhance the quality and quantity of educational feed-
backs. Although automated skill assessment on simulated virtual reality
(VR) environments have been promising, applying vision methods to live
(‘real’) surgical videos has been challenging due to: 1) the lack of kine-
matic data from the da Vinci® surgical system, a key source of infor-
mation for determining the movement and trajectory of robotic manip-
ulators and suturing needles, and 2) the lack of training data due to the
labor-intensive task of segmenting and scoring individual stitches from
live videos. To address these challenges, we developed a self-supervised
pre-training paradigm whereby sim-to-real generalizable representations
are learned without requiring any live kinematic annotations. Our model
is based on a masked autoencoder (MAE), termed as LiveMAE. We aug-
ment live stitches with VR images during pre-training and require Live-
MAE to reconstruct images from both domains while also predicting
the corresponding kinematics. This process learns a visual-to-kinematic
mapping that seeks to locate the positions and orientations of surgical
manipulators and needles, deriving “kinematics” from live videos without
requiring supervision. With an additional skill-specific finetuning step,
LiveMAE surpasses supervised learning approaches across 6 technical
skill assessments, ranging from 0.56-0.84 AUC (0.70-0.91 AUPRC), with
particular improvements of 35.78% in AUC for wrist rotation skills and
8.7% for needle driving skills. Mean-squared error for test VR kinemat-
ics was as low as 0.045 for each element of the instrument poses. Our
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contributions provide the foundation to deliver personalized feedback to
surgeons training in VR and performing live prostatectomy procedures.

Keywords: Vision transformers · Masked autoencoders · Self-supervised
learning · sim-to-real generalization · Suturing skill assessment.

1 Introduction

Previous studies have shown that surgeon performance directly affects patient
clinical outcomes [1,2,13,14]. In one instance, manually rated suturing technical
skill scores were the strongest predictors of patient continence recovery following
a robot-assisted radical prostatectomy compared to other objective measures of
surgeon performance [3]. Ultimately, the value of skill assessment is not only
in its ability to predict surgical outcomes, but also in its function as formative
feedback for training surgeons. The need to automate skills assessment is readily
apparent, especially since manual assessments by expert raters are subjective,
time-consuming, and unscalable [4, 5]. View Fig. 1 for problem setup.

Preliminary work has shown favorable results for automated skill assessments
on simulated VR environments, demonstrating the benefits of machine learning
(ML) methods. ML approaches for automating suturing technical skills lever-
aged instrument kinematic (motion-tracking) data as the sole input to recurrent
networks have been able to achieve effective area-under-ROC-curve (AUC), up
to 0.77 for skill assessment in VR sponge suturing exercises [6]. Multi-modality
approaches that fused information from both kinematics and video modalities
have demonstrated increased performance over uni-modal approaches in both
VR sponge and tube suturing exercises, reaching up to 0.95 AUC [7].

Despite recent advances, automated skill assessment in live scenarios is still
a difficult task due to two main challenges: 1) the lack of kinematic data from
the da Vinci® system, and 2) the lack of training data due to the labor-intensive
labeling task. Unlike simulated VR environments where kinematic data can be
readily available, current live surgical systems do not output motion-tracking
data, which is a key source of information for determining the movement and
trajectory of robotic manipulators and suturing needles. Moreover, live surgical
videos do not have a clear and painted target area for throwing stitches, unlike
VR videos, which makes the task additionally difficult. On the other hand, due
to the labor-intensive task of segmenting and scoring individual stitches from
each surgical video, the quantity of available and labeled training data is quite
low, rendering traditional supervised learning approaches ineffective.

To address these challenges, we propose LiveMAE which learns sim-to-real
generalizable representations without requiring any live kinematic annotations.
Leveraging available video and sensor data from previous VR studies, LiveMAE
can map from surgical images to instrument kinematics and derive surrogate
“kinematic” automatically by learning to reconstruct images from both VR and
live stitches while also predicting the corresponding VR kinematics. This creates
a shared encoded representation space between the two visual domains while
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Fig. 1. Suturing skill assessment. (a) The suturing step of RARP is composed
of multiple stitches, each of which can also be broken down into three sub-phases
(needle handling, driving, and withdrawal). (b) Input video and kinematics data for
each VR suturing exercise. Live data do not have kinematics. Colors indicate different
instruments such as left/right manipulators and needle/targets. (c) Each sub-phrase
can be divided into specific EASE skills [8] and assessed for their quality (low vs high).

using available kinematic data from only one domain, the VR domain. Moreover,
our pre-training strategy is not skill-specific which brings a bonus in improving
data efficiency. LiveMAE enjoys up to six times more training data across the
six suturing skills seen in Fig.1c, especially when we further break down video
clips and kinematic sequences into multiple (image, kinematic) pairs.

Overall, our main contributions include:

1. We propose LiveMAE which learns sim-to-real generalizable representations
without requiring any live kinematic annotations.

2. We design a pre-training paradigm that increases the number of effective
training samples significantly by combining data across suturing skills.

3. We conduct rigorous evaluations to verify the effectiveness of LiveMAE on
surgical data collected and labeled across multiple institutions and surgeons.
Finetuning on suturing skill assessment tasks yields better performance on
5/6 skills on live surgical videos compared to supervised learning baselines.

2 Methodology

Masked autoencoding is a method for self-supervised pre-training of Vision
Transformers (ViTs [12]) on images. It has demonstrated the capability to learn
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Fig. 2. LiveMAE Overview. (a) Pre-training with a shared encoder between Live
and VR images and a kinematic decoder for predicting instrument kinematics. (b) Skill-
specific finetuning for suturing skill assessment using pre-trained LiveMAE mapping.

efficient and useful visual representations for downstream tasks such as image
classification and segmentation. Our model builds on top of mask autoencoders
(MAEs) and we provide a preliminary intro for MAE in Appendix 1.1.

The input to our system contains both VR and live surgical data. VR data
for a suturing skill s is defined as DV R

s = {(xi, ki, yi)}Ns
i=0 consisting of segmented

video clips xi ∈ RF×H×W×3, aligned kinematic sequence ki ∈ RF×70, and EASE
technical skill score yi ∈ {0, 1} for non-ideal vs ideal performance. F denotes the
number of frames in the video clip. Live data for s is similarly DL

s = {(xi, yi)}Ms
i=0,

except there are no aligned kinematics. Kinematic data has 70 features tracking
10 instruments of interest, each pose contains 3 elements for coordinates and 4
elements for quarternions. There are six technical skill labels, see Figure 1c.

2.1 LiveMAE

Since DL
s lacks kinematic information that is crucial for suturing skill assessment,

we propose LiveMAE to automatically derive “kinematics” from live videos that
can be helpful for downstream prediction. Specifically, we aim to learn a map-
ping ϕ : RH×W×3 → R70 from images to instrument kinematics using available
video and sensor data from DV R

s , and subsequently utilizing that mapping ϕ on
live videos. Although the visual style between VR and live surgical videos can
differ, this mapping is possible since we know that both simulated VR and live
instruments share the exact same dimensions and centered coordinate frames.
Our method builds on top of MAE and has three main components: a kinematic
decoder, a shared encoder, and an expanded training set.

Kinematic decoder. For mapping from a surgical image to the instrument
kinematics, we propose an additional kinematic output head along with a corre-
sponding self-supervised task of reconstructing kinematics from masked input.
See Fig 2a. The kinematic decoder is also a lightweight series of Transformer
blocks that takes in a full sequence of both the (i) encoded visible patches,
and (ii) learnable mask tokens. The last layer of the decoder is a linear pro-
jection whose number of output channels equals to 70, the dimension of the
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kinematic data. Similar to the image reconstruction task, which aims to learn
visual concepts and semantics by encoding them into a compact representation
for reconstruction, we additionally require these representations to contain in-
formation regarding possible poses of the surgical instruments. The kinematic
decoder also has a reconstruction loss, which computes the mean squared error
(MSE) between the reconstructed and original kinematic measurements.

Shared encoder. To learn sim-to-real generalizable representations that
generalize across the different visual styles of VR and live videos, we augment
live images with VR videos for pre-training. Since we do not have live kinematics,
the reconstruction loss from the kinematic decoder will be set to zero for live
samples within a training batch. This creates a shared encoded representation
space between the two visual domains such that visual concepts and semantics
about manipulators and suturing needles can be shared between them. Moreover,
as we simultaneously train the kinematic reconstruction task, we are learning a
mapping that can generalize to live videos, since two similar positionings in
either VR or live should have similar corresponding kinematics.

Expanded training set. Since we have limited surgical data, and the map-
ping from image to instrument kinematics is not specific to any one suturing
skill, we can combine visual and kinematic data across different skills during
pre-training. Specifically, we pre-train the model on all data combined across
6 suturing skills to help learn the mapping. In addition, we can further break
down video clips and kinematic sequences into F ∗(Ns+Ms) (image, kinematics)
pairs to increase the effective training set size without needing heavy data aug-
mentations. These two key facts provide is a unique advantage over traditional
supervised learning, since training each skill assessment task required the full
video clip to learn temporal signature along with skill-specific scorings.

Finetuning of LiveMAE for Skill Assessment After pre-training, we
discard the image decoder and only use the pathway from the encoder to the
kinematic decoder as our mapping ϕ. See Figure 2b. We applied ϕ to our live
data DL

s and extract a surrogate kinematic sequence for each video clip. The
extracted kinematics are embedded by a linear projection with added positional
embeddings and processed with a lightweight sequential DistilBERT model. We
append a linear layer on top of the pooled output from DistilBERT for clas-
sification. We finetune the last layer of ϕ and the sequential model with the
cross-entropy loss using a small learning rate, e.g. 1e-5.

3 Experiments and Results

Datasets. We utilize a previously validated suturing assessment tool (EASE [8])
to evaluate the robotic suturing skill in both VR and live surgery. We collected
156 VR videos and 54 live surgical videos from 43 residents, fellows, and at-
tending urologic surgeons in this 5-center multi-institutional study. VR suturing
exercises were completed on the Surgical Science™ Flex VR simulator and live
surgical videos of surgeons performing the vesico-urethra anastomosis (VUA)
step of a RARP were recorded. Each video was split into stitches, (n = 3448)
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Table 1. Suturing skill assessments on VR data. Boldfaced denotes best and ± are
standard deviations across 5 held-out institutions.

Repositions HoldRatio HoldAngle

Modality Model AUC AUPRC AUC AUPRC AUC AUPRC

Kinematics
LSTM 0.808 ± 0.02 0.888 ± 0.03 0.567 ± 0.09 0.859 ± 0.06 0.469 ± 0.06 0.804 ± 0.07

Transformer 0.852 ± 0.03 0.916 ± 0.04 0.652 ± 0.07 0.895 ± 0.05 0.457 ± 0.08 0.796 ± 0.06

Video
ConvLTSM 0.715 ± 0.06 0.840 ± 0.04 0.587 ± 0.07 0.883 ± 0.05 0.552 ± 0.02 0.831 ± 0.05

ConvTransformer 0.842 ± 0.02 0.912 ± 0.03 0.580 ± 0.03 0.880 ± 0.05 0.560 ± 0.06 0.837 ± 0.06

Video + Kin. AuxTransformer 0.851 ± 0.02 0.912 ± 0.04 0.597 ± 0.07 0.886 ± 0.05 0.557 ± 0.03 0.842 ± 0.06

DrivingSmoothness WristRotation WristRotationNW

Modality Model AUC AUPRC AUC AUPRC AUC AUPRC

Kinematics
LSTM 0.851 ± 0.06 0.953 ± 0.03 0.615 ± 0.07 0.894 ± 0.03 0.724 ± 0.04 0.942 ± 0.03

Transformer 0.878 ± 0.06 0.963 ± 0.02 0.640 ± 0.08 0.899 ± 0.02 0.725 ± 0.07 0.942 ± 0.03

Video
ConvLTSM 0.851 ± 0.05 0.938 ± 0.03 0.636 ± 0.10 0.897 ± 0.03 0.661 ± 0.03 0.934 ± 0.02

ConvTransformer 0.858 ± 0.04 0.956 ± 0.02 0.634 ± 0.10 0.895 ± 0.04 0.700 ± 0.06 0.937 ± 0.02

Video + Kin. AuxTransformer 0.868 ± 0.06 0.963 ± 0.02 0.649 ± 0.10 0.898 ± 0.04 0.675 ± 0.05 0.935 ± 0.02

total, and each stitch was segmented into sub-phrases with 6 binary assessment
labels (low vs. high skill). See data breakdown and processing in Appendix 1.2.
Metrics and Baselines. Across the five institutions, we use 5-fold cross-valid
ation to evaluate our model, training and validating on data from 4 institutions
while testing on the 5th held-out institution. This allows us to test for general-
ization on unseen cases across both surgeons and medical centers. We measure
and report the mean ± std. dev. for the two metrics: (1) Area-under-the-ROC
curve (AUC) and (2) Area-under-the-PR curve (AUPRC) for the 5 test folds.

To understand the benefits of each data modality, we compare LiveMAE
against 3 setups: (1) train/test using only kinematics, (2) train/test using only
videos, and (3) train using kinematic and video data while testing only on video
(no live kinematics). For kinematics-only baselines, we use two sequential models
(1) LSTM recurrent model [9], and (2) DistillBERT transformer-based model
[10]. For video-only baselines, we used two models based on pre-trained CNNs(3)
ConvLSTM and (4) ConvTransformer. Both used pre-trained AlexNet to extract
visual and flow features from the penultimate layer for each frame. The features
are then flattened as used as input vectors to the sequential model (1) and (2).
For a multi-modal baseline, we compare against recent work, AuxTransformer [7],
which uses kinematics as privileged data in the form of an auxiliary loss during
training. Unlike our method, they have additional kinematic supervision for the
live video domain which we do not have.

3.1 Understanding the benefits of Kinematics

Table 1 presents automated suturing assessment results for each technical skill
on VR data from unseen surgeons across the 5 held-out testing institutions. We
make 3 key observations: (1) we successfully reproduced assessment performance
seen in previous works and showed that sequential models trained on kinematic-
only data often achieve the best results (outperforming video and multi-modal
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Table 2. Suturing skill assessment on Live data. Boldfaced denotes best and ± are
standard deviations across 5 held-out institutions.

Repositions HoldRatio HoldAngle

Modality Model AUC AUPRC AUC AUPRC AUC AUPRC

Video ConvTransformer 0.822 ± 0.02 0.905 ± 0.02 0.564 ± 0.10 0.697 ± 0.15 0.489 ± 0.06 0.813 ± 0.03

Video + Kin.

AuxTransformer 0.831 ± 0.02 0.900 ± 0.01 0.466 ± 0.06 0.631 ± 0.19 0.505 ± 0.02 0.805 ± 0.06

AuxTransformer-FT 0.828 ± 0.02 0.897 ± 0.01 0.472 ± 0.06 0.630 ± 0.19 0.499 ± 0.05 0.790 ± 0.07

(Ours) LiveMAE 0.832 ± 0.03 0.911 ± 0.03 0.430 ± 0.05 0.5930 ± 0.20 0.550 ± 0.10 0.844 ± 0.07

(Ours) LiveMAE-FT 0.837 ± 0.01 0.912 ± 0.02 0.474 ± 0.03 0.610 ± 0.20 0.489 ± 0.04 0.822 ± 0.04

DrivingSmoothness WristRotation WristRotationNW

Modality Model AUC AUPRC AUC AUPRC AUC AUPRC

Video ConvTransformer 0.667 ± 0.07 0.894 ± 0.06 0.435 ± 0.06 0.649 ± 0.05 0.445 ± 0.01 0.702 ± 0.05

Video + Kin.

AuxTransformer 0.502 ± 0.03 0.830 ± 0.07 0.519 ± 0.04 0.708 ± 0.04 0.519 ± 0.04 0.708 ± 0.04

AuxTransformer-FT 0.483 ± 0.04 0.810 ± 0.10 0.517 ± 0.04 0.707 ± 0.04 0.520 ± 0.08 0.753 ± 0.06

(Ours) LiveMAE 0.683 ± 0.08 0.878 ± 0.08 0.543 ± 0.13 0.721 ± 0.10 0.486 ± 0.12 0.723 ± 0.12

(Ours) LiveMAE-FT 0.725 ± 0.12 0.903 ± 0.06 0.562 ± 0.08 0.733 ± 0.08 0.634 ± 0.06 0.826 ± 0.01

on 5/6 skills with high mean AUCs (0.652-0.878) and AUPRC (0.895-0.963). (2)
Vision model trained on video-only data can help with skill assessment, espe-
cially in certain skills such as needle hold angle where the angle between the
needle tip and the target tissue (largely responsible for high/low score) is better
represented visually, opposed kinematic poses. (3) Lastly, we demonstrated the
benefits of using kinematics data as supervisory signals during training, which
yields improved performance on video-only baselines where kinematic data are
not available during testing, seen with AuxTranformer’s numbers. Overall, kine-
matics provide a wealth of clean motion signals that is essential for skill assess-
ment, which helps to inspire LiveMAE for assessment in live videos.

3.2 Evaluation of LiveMAE on live videos

Quantitative results. Table 2 presents automated suturing assessment results
for each technical skill on Live data across the 5 held-out institutions. We make 3
key observations: (1) Skill assessment on live stitch using LiveMAE or LiveMAE-
finetuned often achieves the best results (outperforming supervised baselines and
AuxTransformer with mean AUCs (0.550-0.837) and AUPRC (0.733-0.912) with
particular improvements of 35.78% in AUC for wrist rotation skills and 8.7% for
needle driving skill. (2) LiveMAE can learn generalizable representations from
VR to Live using its shared encoder and kinematic mapping, achieving reason-
able performance even without fine-tuning in the needle repositioning, hold angle
and wrist rotation skills. (3) Clinically, we observe that VR data can directly help
with live skill assessment, especially in certain skills such as wrist rotation and
wrist rotation withdrawal (+35.78% increase in AUC), where medical students
confirmed that the rotation motions (largely responsible for high/low score) are
more pronounced in VR suturing videos and less so in Live videos due to how
manipulators are visualized in the simulation. Hence training with VR data can
help to teach LiveMAE of the desired assessment procedure that is not as clear
in Live data and supervised training paradigm. Overall, LiveMAE contributes
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Fig. 3. Visualizations of reconstructed images and kinematics. Images for dif-
ferent exercises {sponge, tube, sheet} and live videos are presented. (a) Masked inputs
and reconstructed images vs original images for held-out VR and live samples. (b)
Predicted and original 70 kinematic features for the 4 VR samples. The bottom row
plots the absolute difference. MSE for held-out VR kinematics are 0.045 ± 0.001.

positively to the task of automated skill assessment, especially in live scenarios
where it is not possible to obtain kinematics from the da Vinci® surgical system.
Qualitative results. We visualized both reconstructed images and kinematics
from masked inputs in Figure 3. Top row of Fig. 3 a shows the 75% masked
image where only 1/4 of the visible patches are input into the model. The block
patterns are input patches to LiveMAE that were not masked. The middle row
shows the image’s visual reconstruction vs. the original images (last row). We
observe that LiveMAE can pick out and reconstruct the positionings of the ma-
nipulators quite well. It also does a good job at reconstructing the target tissue,
especially in Tube1 and Sheet1. However, we also observe very small reconstruc-
tion artifacts in darker/black regions. This can be attributed to the training data,
which sometimes contain all black borders that were not cropped out, yielding
the confusion between black borders in live videos and black manipulators in
the VR videos. In Fig. 3b, we plot in the top row the original and predicted
kinematics of the VR samples in blue and orange, respectively. The bottom row
plots their absolute difference. LiveMAE does well in predicting kinematics from
unseen samples, especially in Sheet1 where it gets both positioning and orien-
tations correctly for all instruments of interest, off by at most 0.2. In Sponge1
and Tube1, we notice it does a poor job at estimating poses for some of the
instruments, namely the orientation of the needle and target positions (index
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4-7, 60-70) in Sponge1 and the needle orientation (index 4-7) in Tube1. This can
happen in cases where it is hard to see and recognize the needle in the scene,
making it difficult to estimate the exact needle orientation, which may explain
LiveMAE’s poorer performance for the skill Needle hold ratio. and presents a
promising direction for future work in diving deeper into CV models to segment
out instruments of interest since they can be easily ignored.

4 Conclusion

Self-supervised learning methods, as utilized in our work, showed that video-
based evaluation of suturing technical skills in live surgical videos is achievable
with robust performance across multiple institutions. Although current work
is limited to using VR data from one setup, namely Surgical Science™ Flex
VR, our approach is independent from that system and can be applied on top
of other surgical simulation systems with synchronized kinematics and video
recordings. Future work will expand on the applications we demonstrated to
determine whether it is possible to have a fully autonomous process, or semi-
autonomously with a "human-in-the-loop".

Acknowledgements This study is supported in part by the National Cancer
Institute under Award Number 1RO1CA251579-01A1.

References

1. Birkmeyer JD, Finks JF, O’Reilly A, Oerline M, Carlin AM, Nunn AR, Dimick
J, Banerjee M, Birkmeyer NJ, Michigan Bariatric Surgery C (2013) Surgical skill
and complication rates after bariatric surgery. N Engl J Med 369(15):1434–1442.
https://doi. org/10.1056/NEJMsa130062

2. Hung AJ, Chen J, Ghodoussipour S, Oh PJ, Liu Z, Nguyen J, Purushotham S, Gill
IS, Liu Y (2019) A deep-learning model using automated performance metrics and
clinical features to predict urinary continence recovery after robot-assisted radical
prostatectomy. BJU Int 124(3):487–495. https://doi.org/10.1111/bju.14735

3. Trinh L, Mingo S, Vanstrum EB, Sanford DI, Aastha MR, Nguyen JH, Liu Y,
Hung AJ (2021) Survival analysis using surgeon skill metrics and patient factors to
predict urinary continence recovery after robot-assisted radical prostatectomy. Eur
Urol Focus S2405–4569(21):00107–00113. https://doi.org/10.1016/j.euf.2021.04.001

4. Chen J, Cheng N, Cacciamani G, Oh P, Lin-Brande M, Remulla D, Gill IS, Hung AJ
(2019) Objective assessment of robotic surgical technical skill: a systematic review.
J Urol 201(3):461–469. https://doi.org/10.1016/j.juro.2018.06.078

5. Lendvay TS, White L, Kowalewski T (2015) Crowdsourcing to assess surgical skill.
JAMA Surg 150(11):1086–1087. https://doi.org/10.1001/jamasurg.2015.2405

6. Hung AJ, Rambhatla S, Sanford DI, Pachauri N, Vanstrum E, Nguyen JH, Liu Y
(2021) Road to automating robotic suturing skills assessment: battling mislabeling of
the ground truth. Surgery S0039–6060(21):00784–00794. https://doi.org/10.1016/j.
surg.2021.08.014



10 L. Trinh et al.

7. Hung AJ, Bao R, Sunmola IO, Huang DA, Nguyen JH, Anandkumar A. Capturing
fine-grained details for video-based automation of suturing skills assessment. Int
J Comput Assist Radiol Surg. 2023 Mar;18(3):545-552. doi: 10.1007/s11548-022-
02778-x. Epub 2022 Oct 25. PMID: 36282465; PMCID: PMC9975072.

8. Sanford DI, Der B, Haque TF, Ma R, Hakim R, Nguyen JH, Cen S, Hung AJ.
Technical Skill Impacts the Success of Sequential Robotic Suturing Substeps. J
Endourol. 2022 Feb;36(2):273-278. doi: 10.1089/end.2021.0417. PMID: 34779231;
PMCID: PMC8861914.

9. Graves A, Graves A. Long short-term memory. Supervised sequence labelling with
recurrent neural networks. 2012:37-45.

10. Sanh V, Debut L, Chaumond J, Wolf T. DistilBERT, a distilled version of BERT:
smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108. 2019 Oct 2.

11. He K, Chen X, Xie S, Li Y, Dollár P, Girshick R. Masked autoencoders are scalable
vision learners. InProceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition 2022 (pp. 16000-16009).

12. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T,
Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.
2020 Oct 22.

13. Balvardi S, Kammili A, Hanson M, Mueller C, Vassiliou M, Lee L, Schwartzman
K, Fiore JF Jr, Feldman LS. The association between video-based assessment of
intraoperative technical performance and patient outcomes: a systematic review.
Surg Endosc. 2022 Nov;36(11):7938-7948. doi: 10.1007/s00464-022-09296-6. Epub
2022 May 12. PMID: 35556166.

14. Fecso AB, Szasz P, Kerezov G, Grantcharov TP. The Effect of Technical Per-
formance on Patient Outcomes in Surgery: A Systematic Review. Ann Surg. 2017
Mar;265(3):492-501. doi: 10.1097/SLA.0000000000001959. PMID: 27537534.


	Self-supervised Sim-to-Real Kinematics Reconstruction for Video-based Assessment of Intraoperative Suturing Skills

